
实验室安全歌

水火无情,人命关天,安全第一,牢记心田。一防水患,二防火险,三防爆炸,四防触电。 实验之前,准备在先,防护用品,一应俱全。实验之中,不得擅离,及时观察,预防突变。 短暂离开,同伴照看,尤应注意,停水停电。加热过夜,最是危险,确需如此,要五保险: 调压变压,使用继电,硅油热包,用作热源。不准回流,不开水冷,温度恒定,方可安眠。 用水注意,水管紧连,水量勿猛,下班拔管。使用电器,先查电线,防止短路,防止漏电。 慎用煤气,小心引燃,远离溶剂,远离实验。明火加热,通风在先。高压气瓶,放稳放远。

化学化工实验室安全知识手册

重庆科技**大学**化学化工学院 二〇二五年一月

引言

高等学校实验室作为实验教学的基地,既是培训本科生、研究生实验能力及专业技能的重要场所,又是培养学生创新能力和科研素质的重要基地,是高等教育"培养适应新世纪我国现代化建设需要的具有创新精神、实践能力和创业精神的素质人才"的重要领域。

实验室安全涉及人身、化学品、防火防爆、用水用电、实验操作、仪器设备、辐射、危险废物处置及环保、科研成果保密、物资财产防盗等诸多方面,是高等学校实验室建设与管理的重要组成部分,也是校园安全教育与文化培养的重要组成部分。

随着高等学校的快速发展,办学规模的不断扩大,实验室安全问题也日益严峻。 近年来,高等学校实验室安全事故频发,轻者造成实验仪器、设施损坏,实验进程中 断;重者造成实验人员伤亡;同时对出事校方、院系也造成不良的社会影响。

《化学化工实验室安全手册》为我校师生员工提供了实验室工作的安全指引。全体师生员工在开展实验工作时须严格遵守实验室安全管理制度和有关仪器设备、化学品、辐射、生物、实验废弃物等方面的安全管理规定,科学实验,规范操作,注意安全,避免事故的发生。

衷心希望师生们能够学习安全知识,强化安全意识,提高防范自救能力。让我们从关爱自我做起,携手共创平安校园、共建和谐社会!

化学化工实验教学中心 2019年1月

目录

第一章 实验室安全守则	01
1.1 一般守则	01
1.2 个人工作守则	02
1.2.1 应做事项	02
1.2.2 禁止事项	02
1.3 非办公室时间实验安全须知	03
1.4 实验室常见安全标志	03
1.5 实验室安全管理法律法规	04
1.5.1国家法律	04
1.5.2 相关法规	05
1.5.3 国家有关部委规章制度	05
1.6 实验室个体防护	06
1.6.1 个体防护佩戴的重要性	06
1.6.2 个体防护的选取原则和考虑因素	07
1.6.3 防护用具的种类及使用	07
第二章 危险化学品安全	14
2.1危险化学品的概念和分类	14
2.1.1 危险化学品的概念	14
2.1.2 危险化学品的分类	14
2.1.3 化学品危险性公示	26

2.2 易制爆化学品30
2.2.1 易制爆化学品定义30
2.2.2 常见易制爆化学品及分类30
2.3 易制毒化学品31
2.3.1易制毒化学品定义31
2.3.2 常见易制毒化学品及分类31
2.3.3 管制易制毒药品的重要性
2.4 剧毒化学品
2.4.1 剧毒化学品定义
2.4.2 常见剧毒化学品及分类
2.4.3 剧毒化学品危害及管控重要性
2.5 危险化学品的采购、存储、使用管理安全
2.5.1 危险化学品采购注意事项
2.5.2 危险化学品存储注意事项
2.5.3 危险化学品使用管理47
第三章 消防安全
3.1 实验室火灾发生的常见隐患
3.2 实验室火灾预防50
3.2.1 火灾预防——用电安全50

3.2.2 火灾预防——谨记常见常见有机液体的易燃性	50
3.2.3 火灾预防——实验室管理	51
3.3 防火器材	52
3.4 火灾处理	54
3.4.1 火灾处理原则及程序	54
3.4.2 火灾处理注意事项	54
3.4.3 火灾报警	55
3.5 火灾扑救	56
3.5.1 煤气泄漏处理办法	56
3.5.2 电器着火处理办法	57
3.5.3 人身上着火处理办法	57
3.5.4 实验室常见火灾扑救方法	57
3.6 火灾逃生与自救	58
第四章 仪器设备使用安全	60
4.1 冰箱的管理	61
4.2 加热设备的管理	62
4.3 高速离心机的管理	62
4.4 机械加工设备的管理	64
4.5 通风橱的管理	64
4.6 特种设备的管理	65

4.6.1 压力设备6	5
4.6.2 起重机械6	7
4.6.3 气体钢瓶6	8
第五章 辐射安全74	1
5.1 实验室常见放射源和放射装置7	4
5.1.1 放射源	4
5.1.2 放射性装置7	5
5.2 电离辐射的危害7	5
5.3 电离辐射防护7	6
5.3.1 辐射防护原则7	6
5.3.2 放射性实验室的安全管理7	7
5.3.3 放射性实验室的人员管理7	7
5.3.4 个人防护用具的配备与应用7	9
第六章 生物安全8	1
6.1 实验室生物安全的基础知识8	1
6.1.1 生物安全的定义8	

6.1.2生物安全实验室的分类81
6.2 生物安全实验室的监管82
6.2.1 一般性要求82
6.2.2 动物实验管理83
6.2.3生物废弃物的处置84
6.3 生物安全实验室的个人防护85
6.3.1个人防护装备的总体要求85
6.3.2生物实验室个人防护装备86
6.4 各级生物安全实验室的个人防护要求86
なしま さかささか (に) 甲
第七章 实验室废弃物处置88
第七草 头验至废弃物处置
7.1 实验室废弃物的一般处置原则
7.1 实验室废弃物的一般处置原则
7.1 实验室废弃物的一般处置原则
7.1 实验室废弃物的一般处置原则 88 7.1.1 处理实验废弃物的一般程序 88 7.1.2 实验废弃物的鉴别 88 7.1.3 实验废弃物的收集及存储一般原则 89
7.1 实验室废弃物的一般处置原则 88 7.1.1 处理实验废弃物的一般程序 88 7.1.2 实验废弃物的鉴别 88 7.1.3 实验废弃物的收集及存储一般原则 89 7.2 化学实验室废弃物的管理与处理 90
7.1 实验室废弃物的一般处置原则 88 7.1.1 处理实验废弃物的一般程序 88 7.1.2 实验废弃物的鉴别 88 7.1.3 实验废弃物的收集及存储一般原则 89 7.2 化学实验室废弃物的管理与处理 90 7.2.1 化学废弃物的范畴 90
7.1 实验室废弃物的一般处置原则 88 7.1.1 处理实验废弃物的一般程序 88 7.1.2 实验废弃物的鉴别 88 7.1.3 实验废弃物的收集及存储一般原则 89 7.2 化学实验室废弃物的管理与处理 90 7.2.1 化学废弃物的范畴 90 7.2.2 化学废弃物的存储 91

第八章 激光安全	96
8.1 激光等级的分类	96
8.2 激光的危害	97
8.3 个人防护	98
8.4激光安全的管理要求	100
第九章 实验室事故应急处置	101
9.1 实验室应急设施与事故应急预案	101
9.1.1实验室应急设施	101
9.1.2 实验事故应急预案	102
9.2实验室应急准备	102
9.2.1 为火警准备	102
9.2.2为实验室紧急事件准备	102
9.2.3为损伤准备	103
9.3 实验室事故报告程序	103
9.4实验室常见事故发生原因分析	104
9.4.1 火灾	
9.4.2 爆炸	
9.4.3 触电	

第一章 实验室安全守则

1.1 一般守则

- (1) 实验室要根据本实验室的特点制定本实验室的安全和环保管理制度,并在醒目的位置张贴、悬挂。
- (2)实验室要详细制定紧急事故处理的应急预案并张贴、悬挂于显眼位置。
- (3)实验室门口应张贴安全信息牌,有危险的场所、设施、设备物品及技术操作等要有警示标志,并及时更新相关信息。
- (4)实验室要指定工作人员对本实验室安全工作进行监督和检查。
- (5)实验室管理者应该根据需要选择合适的防护用具,并负责对防护用具进行维护和更新,确保其适用范围、有效性及完好性。
- (6)实验室合理规划,物品堆放整齐,保持室内通风、地面干燥,及时清理废旧物品,保持消防通道通畅,便干取用防护用品、消防器材和关闭总电源。
- (7)实验室产生的废弃物要按照有关要求进行分类并且按照规定进行处理。
- (8)实验室须定期排查电路、水路以及设备仪器的使用情况,及时清除安全隐患, 报废老化设备。
- (9)进入实验室工作的学生和工作人员必须参加实验室安全培训和相关仪器设备的使用培训,新人员必须考核合格后方可进入实验室工作。
- (10)进入实验室必须遵守实验室的各项规定,严格执行操作规程,做好各类记录,了解实验室潜在的实验风险和应急方式,采取必要的安全防护措施。
- (11)禁止在实验室内吸烟、饮食、睡觉、使用燃烧型蚊香等,禁止放置与实验室无关的物品。严禁打闹、追逐,严禁穿露趾鞋、短裤进入实验室。

- (12)危险品(包括放射性同位素及其废物、剧毒品、麻醉药品、精神药品、易燃易爆品、 高致病性病原微生物菌(毒)种等)须严格按照国家和学校的规定进行管理,领 取、保管、使用以及废弃物的处理环节要有完整的、规范的记录,要定期对危险 品进行全面的核对和盘查,做到帐物相符。
- (13) 放置危险品的场所要加强安全防卫工作,要根据危险品的性质采取适当的安全防护措施,实验室安全人员要按规范操作,并做好个人防护。
- (14) 一旦发生火灾、爆炸以及危险品被盗、丢失、泄露、严重污染和超剂量辐照等安全事故,须立即根据情况启动事故应急处理方案,并采取有效的应急措施,同时向学校主管部门、保卫处报告,必要时向当地的公安、环保、卫生等行政主管部门报告,事故经过和处理情况应详细记录并存档。

1.2 个人工作守则

1.2.1 应做事项

- (1)接受安全教育和环保知识的培训,遵守规章制度。
- (2)实验前查阅药品的性质、潜在危险。
- (3)使用适当的安全设施及个人防护装备。
- (4) 保持整齐干净, 及时清理并分类收集处理实验废弃物。
- (5) 实验结束后, 检查各项设施并做好自身清洁。
- (6) 如有意外应立即向老师报告。

1.2.2 禁止事项

- (1) 切勿在实验室饮食、奔跑、嬉戏等实验操作无关的活动。
- (2) 实验进行时, 切忌擅自离开岗位。

 \cdot 01 \cdot \cdot 02 \cdot

- (3) 切勿未经培训使用不熟悉的仪器或开展未经老师允许的实验。
- (4)严禁堆放杂物堵塞消防通道及安全出口。

1.3 非办公时间实验安全须知

- (1) 一般情况下, 不鼓励学生在非正常办公时间或者单独在实验室进行实验。禁止 在非办公时间单独进行需要使用危险化学品的实验。
- (2) 如确实需要在非办公时间进行实验, 须至少2人同时在场, 并向实验室负责人 报备,获得批准方可进行。
- (3)对于实验时间跨度长必须过夜的实验,须向实验室负责人报告,并根据实验药 品种类、反应量、反应温度、反应压力等实验条件确定合适的人员值守,值守人 员必须至少2人;如确定试验比较安全,可无人值守,但须将实验装置周围清 理干净,实验室不得放置易燃易爆品,并在门口张贴由实验室负责人签字确认 的过夜试验单, 列明适用的危险品、危险联系人和联系电话, 必要时安排人员定 时巛杳。

1.4 实验室常见安全标志

禁止堆放

禁止标志: 不准或者禁止人们的某些行为 禁止用水灭火 禁止放置易燃物

禁止饮用

禁止携带金属物

或手表

禁止启动

警告标志: 警告人们可能发生的危险

当心火灾

当心腐蚀

当心感染

当心低温

当心中毒

当心磁场

当心电离辐射

当心激光

1.5 实验室安全管理法律法规

1.5.1 国家法律

表 1-1 实验室安全涉及的国家法律

名 称	首法实施日期	备注
中华人民共和国安全生产法	2002-11-01	2014 年第二次修正
中华人民共和国劳动法	1995-01-01	
中华人民共和国职业病防治法	2002-05-01	2011 年修正
中华人民共和国环境保护法	1989-12-26	2014 年修订
中华人民共和国水污染防治法	2000-09-01	2008 年修订
中华人民共和国大气污染防治法	2000-09-01	2015 年第二次修订
中华人民共和国环境噪声污染防治法	1997-03-01	
中华人民共和国固体废物污染环境防治法	2005-04-01	2015 年第二次修正
中华人民共和国放射性污染防治法	2003-10-01	
中华人民共和国特种设备安全法	2014-01-01	

· 03 · · 04 ·

1.5.2 相关法规

表 1-2 实验室安全涉及的各项法规

首次实施日期	备注
2002-03-15	2011 年修订
2003-06-16	
2004-11-12	
2005-11-01	
2005-12-01	
2012-03-01	
2006-09-01	
2002-05-12	
2003-06-01	2009 年修订
1988-11-14	2011 年修订
	2002-03-15 2003-06-16 2004-11-12 2005-11-01 2005-12-01 2012-03-01 2006-09-01 2002-05-12 2003-06-01

1.5.3 国家有关部委规章制度

表 1-3 实验室安全涉及的国家有关部委规章制度

环境保护部	国家质量监督 检验检疫总局	卫生部
国家危险废物名录(2016版)	特种设备质量监督与安全监察 规定	药品类易制毒化学品管理办法
企业事业单位环境信息公开 办法	气瓶安全监察规定	放射事故管理规定
废弃危险化学品污染环境防 治办法	起重机械安全监察规定	医疗卫生机构医疗废物管理办法
电磁辐射环境保护管理办法	压力管道安全管理与监察规定	可感染人类的高致病性病原微 生物菌(毒)种或样本运输管理 规定
病原微生物实验室生物安全 环境管理办法	特种设备作业人员监督管理 办法	医学实验动物管理实施细则

教育部	国家安全生产监督 管理总局	科技部	
高等学校实验室工作规程	危险化学品目录 (2015版)	基因工程安全管理办法	
高等学校消防安全管理规定	生产经营单位安全培训规定	关于善待实验动物的指导性意见	
学生伤害事故处理办法	作业场所职业危害申报管理 办法	实验动物质量管理办法	
关于加强高等学校实验室排 污管理的通知	特种作业人员安全技术培训 考核管理规定	实验动物许可证管理办法(试行)	
公安部	交通运输部	农业部	
剧毒化学品购买和公路运输 许可证件管理办法	道路危险货物运输管理规定	高致病性动物病原微生物实验 室生物安全管理审批办法	
		动物病原微生物菌(毒)种保藏 管理办法	

1.6 实验室个体防护

在大多数人看来在实验室开展实验是一种科学实验,但同时也是一种危险(艺术)实验。实验室安全事故频发有其存在的隐患根源,虽然了解实验室个体防护器材及正确使用的方法固然不能根除危害,但是却可帮助我们构筑最后一道防线,只有正确佩戴使用,才能保障自己的健康平安。

1.6.1 个体防护佩戴的重要性

实验室存在着各类的危险,有物理性的如各种机械卷入点以及锋利部位、热、冷、辐射、噪声等危险,有化学性的如各类毒性等级不一的化学品、粉尘等危险,有生物性的各类致病菌或者病毒等;如果不采取有效的防护,将会导致实验操作者的受伤、

 \cdot 05 \cdot \cdot 06 \cdot

中毒,严重者会导致职业病甚至死亡。

(1) 个体防护用品是实验室安全防护的有效补充

虽然实验室配备了各类安全防护设施,但在实验操作过程中,操作者仍不可避免的会接触到(触碰到、吸入、食入、经皮肤/眼睛渗入等)各类危险源,继而导致伤害、甚至职业病的发生。个体防护用品此时充当了操作者与危险源之间的最后一道防线,当实验室安全防护装置失效或者不能满足其设定的目的时,可以将危险源阻挡在身体之外,保护操作者的人身安全。

(2)个体防护用品设置和佩戴是国家法律法规要求

国家法律法规(如《职业病防治法》等)对可能接触到危险源的作业提出了个体防护用品配备和佩戴的要求,要求用人单位根据作业场所所能接触到的职业危害因素,选择并提供合适的个体防护用品,培训并监督作业者使用。作业者应按照要求正确佩戴个体防护用品。对于违反相关法律法规要求的行为,责任方需承担相关法律责任。

1.6.2 个体防护的选取原则和考虑因素

个体防护选择时应遵循以下原则:

- ·根据工作场所的职业危害因素及其危害特性进行风险分析;
- ·根据国家相关法规标准的要求选择;
- ·根据所接触的化学品的安全技术说明书(MSDS)建议;
- ·根据工作特性和作业环境等,同时应综合考虑如下因素。
- (1)用具的保护力度;
- (2)应无妨碍工作上的活动;
- (3)配合使用环境之特殊要求:
- (4) 是否配合其他的防护用具:

- (5)一次性和重复使用性(耐用性);
- (6)使用者舒适性与接受性;
- (7)体能和训练的需要:
- (8)符合国际标准或有关法例认可。

1.6.3 防护用具的种类及使用

常见的防护用具包括:1)头部保护;2)眼和面部保护器;3)听力保护;4)呼吸防护;5) 手部防护;6)身体防护;7)足部防护;8)坠落防护设施等。下面主要介绍身体、手部 及眼睛防护用具。

(1) 头部防护

当在有可能发生高处坠物或者作业者进入容易碰头的场所作业时,需要佩戴头部保护用具,如安全帽等。使用前应检查安全帽有效期、外壳是否有破损/裂痕或凹痕等,帽带、内衬等附件是否完好。

- (2) 眼部防护用具(如图 1-1)
- ① 机械性伤害, 硬物飞入 尖锐物体, 金属碎片, 沙石和玻璃碎片;
- ② 液体溅泼伤害;

辐射强光: 眩光气焊和电焊产生的强光和紫外线,溶炉产生的红外线眩光,实验用激光,杀菌、消毒用紫外线等。

图 1-1 各类眼部防护用具

(3) 听力防护

根据工作场所职业危害因素接触限制的要求,加权值超过85分贝的作业场所 应配备听力防护用具。常用的听力防护用具一般分为耳塞和耳罩两种,根据使用场 所和减噪能力的不同选择不同类型的听力防护用具。

① 耳塞: 又可分为可丢弃式和可重复使用的两种, 形式上有子弹头型、圣诞树型等多种款式。

关于耳塞的佩戴方式,可分为以下三个步骤:

a. 耳塞揉细;

b. 耳道向后上方拉直, 塞入外耳道;

c. 维持至耳塞膨胀封闭耳道

图 1-2 耳塞的佩戴方法

② 耳罩: 耳罩是压在耳廓周围包围耳廓具有降低噪声伤害能力的一种听力防护用品,相比耳塞而言,它具有更高的防护等级,降噪率更好。耳罩可单独使用,也可以跟耳塞结合使用。

(4) 呼吸防护

呼吸防护用具是防御缺氧空气和空气污染物进入呼吸道的装备,其主要作用是防止操作者过量吸入有害物质,如烟雾、粉尘、有害气体、纤维等。

呼吸防护用具选择需考虑的因素有:污染物的类别、污染物的浓度、暴露极限、 舒适性、使用者的健康要求、使用周期等。

呼吸防护用具一般分为空气过滤式(包括防护口罩、半面/全面/电动送风式呼吸防护器)和供气式(包括连续供气型和自负式)两种类型。

① 防护口罩的佩戴方法

图 1-3 口罩的佩戴方法

- a. 面向口罩无鼻夹的一面, 两手各拉住一边耳带, 使鼻夹位于口罩上方;
- b. 用口罩抵住下巴:
- C. 将耳带拉至耳后, 调整耳带至感觉尽可能舒适;
- d. 将双手手指置于金属鼻夹中部,一边向内按压一边顺着鼻夹向两侧移动指尖,直至将鼻夹完全按压成鼻梁形状为止。仅用单手捏口罩鼻夹可能会影响口罩的密合性。

 \cdot 09 \cdot \cdot 10 \cdot

2 半面罩呼吸保护器佩戴方法

正确佩戴防毒面具的方法:

- 1. 解开头带底部搭扣, 将面具盖住口鼻;
- 2. 拉起上端头带, 使头箍舒适的置于头顶位置;
- 3. 双手在颈后将头带底部搭扣扣好;
- 4. 调整头带松紧, 使面具与脸部密合良好。先调整颈后头带, 如果头带拉得过紧, 可用手指向外推塑料片. 将头带放松。

对防毒面具进行密闭性检查的方法:

1. 正压密闭性检测: 将手掌盖住呼吸阀并向外慢慢呼气, 面具应向外轻轻膨胀。如果气体从面部及面具间泄漏, 重新调整面具位置并调节头带的松紧度, 达到密合良好。

2. 负压密闭性检测: 用手掌抵住虑盒或虑棉中心部位并轻轻吸气, 面具应轻微的塌陷, 并向脸部靠拢。如果感觉气体从面部和面具间漏进,重新调整面具位置并调节头带的松紧度,达到密合良好。

图 1-4 半面罩的佩戴方法

(5) 手部防护

防护手套的选择应根据工作的需要和不同类型手套不同的防护功效, 没有一种 类型的手套适合所有的工作。

防护手套根据防护目的可分为不同类型的手套,如一般工作手套(如面纱手套)、 防静电、绝缘、防化学品、防酸碱、防割、防烫等手套。

选择防护手套的应考虑的因素如下:接触化学品的类型、化学品的浓度、工作(接触)的时间、使用频率、灵活性、产品保护、使用者是否对橡胶过敏等。

① 实验室常用手套:丁腈、乳胶手套、隔热手套、防割手套、棉纱手套

考虑因素: 1) 拉伸能力; 2) 一次性或者重复使用; 3) 手套材质: 耐化学性, 热、冷冻保护, 机械性伤害的保护: 4) 长度: 手肘、手腕、前臂长度。

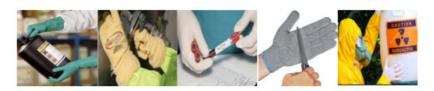


图 1-5 各类实验室常用手套

(6) 身体防护用具

身体防护用具主要指防护服,包括一般防护服、化学品防护服、防放射性服、浸水工作服、防寒/热防护服、带电作业屏蔽服、防静电服、无尘服、阻燃服等。

- ① 实验服有效阳挡化学药剂直接接触到皮肤:
- ② 操作发火物质时穿阻燃实验服;

其他防护服:防渗围裙、特卫强罩衫、化学防护服(CPC)。

 \cdot 11 \cdot \cdot 12 \cdot

图 1-6 各类用途的防护服

(7) 足部防护

足部防护主要是保护穿用者的小腿及脚部免受物理、化学和生物等外界因素的伤害。实验室等作业场所可能遇到的足部危害的种类有:被落下的重物砸伤、接触化学品、被过热的物体表面烫伤、被尖锐物品扎伤、电击、在易燃区域释放静电导致火灾或爆炸等。

根据所防护的危险因素,足部防护用具又可分为:防化学品鞋、耐酸碱鞋(靴)、耐油鞋(靴)、防水胶靴、防砸鞋(靴)、防护鞋、安全鞋、防刺穿鞋、防静电鞋、导静电鞋、绝缘鞋(靴)、防护鞋(靴)等类型。实际应用中,很多产品都将多种功能集中起来,达到多种用途的目的。

(8) 坠落防护设施

坠落防护设施是防止高处作业者(距离坠落平面2米以上)坠落或高处落物伤害的防护用品。按照防护目的不同,坠落防护设施可分为安全带、安全网(分为平网和立网)两种。

第二章 危险化学品安全

目前世界上大约存在数百万种化学物质,常用的约7万种,每年有大约上干种新化学物质问世。可以说现代社会中的每一个人都生活在化学物质的包围中,这其中有相当部分的化学物质具有反应性、爆燃性、毒性、腐蚀性、致畸性、致癌性等。若对化学品缺乏安全使用知识,在化学品的生产、储存、操作、运输、废弃物处置中防护不当,则可能发生损害健康、威胁生命、破坏环境和损害财产的事故。高等学校实验室中常常会涉及各种危险化学品的使用。学习、掌握危险化学品的知识对预防与化学品相关的实验室事故至关重要。

2.1 危险化学品的概念和分类

2.1.1 危险化学品的概念

危险化学品是指具有毒害、腐蚀、爆炸、燃烧、助燃等性质,对人体、设施、环境具有危害的剧毒化学品和其他化学品。(《危险化学品安全管理条例》中华人民共和国国务院令第591号,2011年)

2.1.2 危险化学品的分类

我国现行的危险化学品的分类标准是《化学品分类和危险性公示通则》(GB 13690-2009)和《危险货物分类和品名编号》(GB 6944-2012),这两个标准在技术内容方面分别与联合国推荐的危险化学品或危险货物分类标准"紫皮书"和"橙皮书"一致。"紫皮书"指《全球化学品统一分类和标签制度》,"橙皮书"指《联合国关于危险货物运输的建议书规章范本》。

《危险货物分类和品名编号》将化学品按其危险性或最主要的危险性划分为 9 个类别的 21 项。这 9 个类别分别为: 1)爆炸品; 2)压缩气体和液化气体; 3)易燃液体; 4) 易燃固体、易于自燃的物质和遇水放出易燃气体的物质; 5) 氧化性物质与有机过氧化物; 6) 毒性物质和感染性物质; 7) 放射性物质; 8) 腐蚀性物质; 9) 杂项危险物质和物品。本小节主要对各类危险化学品的定义、危险特性和实验室主要的危险化学品举例进行介绍。

《化学品分类和危险性公示通则》按理化危险、健康危险和环境危险将化学物质和混合物分为 28 个危险性类别,具体见表 2-1。

表 2-1《化学品分类和危险性公示通则》对危险化学品的分类

理化危险	健康危险	环境危险
爆炸物	急性毒性	危害水生环境
易燃气体	皮肤腐蚀 / 刺激	(1)急性水生毒性
易燃气凝胶	严重眼损伤 / 眼刺激	(2)慢性水生毒性
氧化性气体	呼吸或皮肤致敏	
压力下气体	生殖细胞致突变性	
易燃液体	致癌性	
易燃固体	生殖毒性	
自反应物质或混合物	特异性靶器官系统毒性 (一次接触)	
自燃液体	特定靶器官系统毒性 (反复接触)	
自燃固体	吸入危险	
自热物质和混合物		
遇水放出易燃气体的物质		
或混合物		
氧化性液体		
氧化性固体		
有机过氧化物		
金属腐蚀剂		

(一) 爆炸物 (警示标识图 2-1)

(1) 定义: 能够通过化学反应产生气体, 其温度压力和速度高到能对周围造成破坏的固体或液体物质(或这些物质的混合物),也包括不放出气体的烟火物质。爆炸性物质按组成可分为爆炸化合物和爆炸混合物。

图 2-1 爆炸品警示标识

(2)危险特性

- ① 爆炸性强:爆炸性物质都具有化学不稳定性,在一定外界因素作用下,会进行快速、猛烈的化学反应,一般在万分之一秒内完成化学反应, 并放出爆炸能量。
- ② 敏感度高: 热、火花、撞击、摩擦、冲击波、光、静电、特定的催化剂或杂质等都可能引发爆炸品发生爆炸反应。爆炸品的爆炸需要外界供给一定的能量,即起爆能。一些化合物的起爆能非常低、十分敏感,稍有不慎即可引发爆炸。例如雷酸银,稍经触动即能发生爆炸。
- ③ 破坏性大: 爆炸产生的大量热量由于来不及释放,会产生很高的温度,有时甚至高达数千度;同时产生的大量气体,形成高压,高温高压气体做功会对周围环境产生巨大的破坏力和冲击波。且绝大多数爆炸品爆炸时产生的 CO、HCN、CO2、NO2、NO、N2 等气体具有毒性或窒息性。另外爆炸还容易引发次生灾害,如大面积火灾,导致有毒有害化学品泄漏等。
- (3)实验室常见爆炸品:高氯酸盐或者有机高氯酸化合物;硝酸酯类或者含硝基的有机物:叠氮化合物:重氮化合物

(二)压缩气体和液化气体

- (1) 定义: 属于危险化学品的气体符合下面两种情况之一:
 - ① 在 50℃时, 其蒸汽压力大于 300kPa 的物质;
 - ② 20℃时在 101.3kPa 压力下完全是气体的物质:

· 15 ·

本类危险化学品包括压缩、液化或加压溶解的气体和冷冻液化气体,一种或多种气体与一种或多种其他类别物质的蒸气的混合物,充有气体的物品和烟雾剂。按危险特性可将本类化学品分为易燃气体(警示标志如图 2-2)、有毒气体(警示标志如图 2-3)和非易燃无毒气体三类。易燃气体:极易燃烧,与空气混合形成爆炸性混合物;有毒气体:具有毒性或腐蚀性,对人体健康造成危害;非易燃无毒气体:包括窒息性气体或氧化性气体,氧化性气体比空气更容易引起或促进气体材料燃烧,为助燃气体,与油脂能发生燃烧或者爆炸,窒息性气体会稀释或取代空气中的氧气,在高浓度时对人有窒息作用。

图 2-3 有毒气体警示标识

(2) 危险特性

- ① 膨胀爆炸性:由于压缩气体和液化气体是把气体经高压压缩贮藏于 钢瓶内,无论是哪种气体处于高压下时,它们在受热、撞击等作用时 均易发生物理爆炸。
- ② 易燃易爆性:在常用的压缩气体和液化气体中,超过半数是易燃气体。与易燃液体、固体相比,更易燃烧,燃烧速度快,着火爆炸危险性大。
- ③ 健康危害:本类中的绝大多数气体对人体健康具有危害性,如毒性、刺激性、腐蚀性或窒息性。
- ④ 氧化性: 危险气体中很多具有氧化性,包括含氧的气体,如氧气、压缩 空气、臭氧、一氧化二氮、二氧化硫、三氧化硫等: 还包括一些不含氧

的气体,如氯气 氟气。这些气体遇到还原性气体或物质 如多数有机物、油脂等) 易发生燃烧爆炸。在储存、运输和使用过程中要将这些气体与其他可燃气体分开。

⑤ 扩散性: 气体由于分子间距大, 相互作用力小, 所以非常容易扩散。 比空气轻的气体在空气中容易扩散, 易与空气形成爆炸性混合物; 比 空气重的气体往往延地面扩散, 聚集在房屋角落等处, 长时间不散, 遇着火源发生燃烧或爆炸。

(3)实验室常见危险气体

- ① 常见危险易燃气体有:氢气、甲烷、乙烷、乙烯、丙烯、乙炔、环丙烷、丁二烯、一氧化碳、甲醚、环氧乙烷、乙醛、丙烯醛、氨、乙胺、氰化氢、丙烯腈、硫化氢、二硫化碳等。
- ② 常见有毒气体有: 光气、溴甲烷、氰化氢、硫化氢、氟化氢、氧化亚氮等。
- ③ 常见非易燃无毒气体:纯氧、氮气、二氧化碳、惰性气体等。

(三)易燃液体(警示标识如图 2-4)

(1) 定义: 闪点小于或者等于 60℃时放出易燃蒸气的液体或者液体混合物, 或是在溶液或者悬浮液中含有固体的液体。

(2) 危险特性:

图 2-4 易燃液体警示标识

- ① 易燃性:易燃液体的闪点低,其燃点也低(高于闪点 1~5℃),常温下接触火源极易着火并持续燃烧。易燃液体燃烧是通过其挥发的蒸气与空气形成可燃混合物,达到一定浓度后遇火源实现,实质是液体蒸气与氧发生的氧化反应。
- ② 蒸气的爆炸性:多数易燃液体沸点低于 100℃,具有很强的挥发性, 挥发出的蒸气易于空气形成爆炸性混合物,当蒸气与空气的比例在

爆炸极限范围内时, 遇火源会发生爆炸。

- ③ 毒害性: 易燃液体大多本身有毒害性, 一般不饱芳香族碳氢化合物和 易挥发的石油产品比饱和的碳氢化合物、不易挥发的石油产品的毒 性大。一些易燃液体还具有麻醉性, 如乙醚, 长时间吸入会使人失去 知觉, 发生其他灾害事故。
- ④ 静电性:多数易燃液体是有机化合物,是电的不良导体,在灌注、输送、流动过程中能够产生静电。当静电积累到一定程度就会放电,引起着火或者爆炸。
- ⑤ 热膨胀性:储存于密闭容器中的易燃液体受热后,体积膨胀,蒸汽压力增加,若超过容器的压力限度,就会造成容器膨胀,发生物理爆炸。因此,盛放易燃液体的容器必须留有不少于5%的空间,并储存于阴凉处。
- (3)实验室常见易燃液体,乙醚、丙酮、甲苯。

(四)易燃固体、易于自然的物质和遇水放出易燃气体的物质

1、易燃固体(警示标识如图 2-5)

(1) 定义: 燃点低, 对热、撞击、摩擦、高能辐射等敏感, 易被外部火源点燃, 燃烧迅速, 发出有毒烟雾或者有毒气体,

图 2-5 易燃固体警示标识

- (2)危险特性:
- ① 易燃性:易燃固体的着火点都比较低,一般都在300℃以下,在常温下很小能量的着火源就能引燃易燃固体发生燃烧。有些固体在发生摩擦、撞击等外力作用时也能引起燃烧:
- ② 爆炸性: 绝大多数易燃固体与酸、氧化剂, 尤其是与强氧化剂接触时,

能够立即引起着火或者爆炸。易燃固体粉 末与空气混合极易发生粉尘爆炸,如硫 粉及易燃金属粉末等。

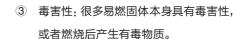


图 2-6 自燃物品警示标识

(3) 实验室常见易燃固体: 硫磺、氨基化钠、

红磷、三硫化磷、铝粉

2、易于自燃的物质(警示标识如图 2-6)

(1)定义: 燃点低,在空气中易发生氧化反应,放出热量,而自行燃烧的物质,包括发火物质和自热物质。发火物质是指与空气接触不足 5min 便可自行燃烧的液体、固体或液体混合物。自热物质是指与孔琪琪接触不需要外部热源便自行发热而燃烧的物质。

(2) 危险特性

- ① 自燃性:自燃性物质都是比较容易氧化的,接触空气中的氧时会产生大量的热,积热达到自燃点而着火、爆炸。同时,潮湿、高温、包装疏松,结构多孔(接触空气面积大)、助燃剂或催化剂存在等因素,可以促进发生自燃。
- ② 化学活性: 自燃物质一般都比较活泼, 具有极强的还原性, 与氧化剂可发生剧烈的反应、爆炸。
- ③ 毒害性: 有相当大部分的自燃物质本身及其燃烧产物不仅对机体有 毒或剧毒, 还可能有刺激性、腐蚀等作用。

(3)实验室常见自燃物质黄磷、还原铁、还原镍、金属有机化合物三异丁基铝、三丁基硼。

3、遇水放出易燃气体的物质(警示标识如图 2-7)

· 19 ·

(1) 定义: 遇水放出易燃气体的物质又称 为遇湿易燃物质, 指遇水或者受潮时, 发生剧烈 化学反应, 易变成自燃物质或放出危险数量的 易燃气体和热量的物质。有的甚至不需要明火, 即能燃烧或者爆炸。

(2)危险特性

- ① 遇水易燃性: 这是这类物质的共性, 图 2-7 過 過 易 燃 物质 警 示 标 识 遇水 潮湿空气 含水物质可剧烈反应, 放出易燃气体和大量热量,引起燃烧、爆炸,或可形成爆炸性混合气体, 从而形成危险;
- ② 遇氧化剂、酸反应更剧烈:除遇水剧烈反应外,也能与酸类或氧化剂 发生剧烈反应,且反应更加剧烈,燃烧爆炸的危险性更大:
- ③ 自燃危险性:磷化物,如磷化钙、磷化锌,遇水形成磷化氢,在空气中能自燃,且有毒:
- ④ 毒害性和腐蚀性:一些遇水放出易燃气体的物质本身具有毒性或放出有毒气体。由于易与水反应,故对机体有腐蚀性,使用这类物质时应防接触皮肤、黏膜,以免灼伤,取用时要戴橡皮手套或镊子操作,不可直接用手拿。

(五)氧化性物质和有机氧化物

(1) 定义

氧化性物质(警示标识如图 2-8):本身不一定燃烧,但通常能分解放出氧或起氧化反应而可能引起或促进其他物质燃烧的物质。

有机过氧化物(警示标识如图 2-9): 有机过氧化物是含有二价 -O-O-结构的液态或者固态有机物质,可以看作是一个或者两个氢原子被有机基替

代的过氧化氢衍生物,该类物质为热不稳定物质,可能发生放热的自加速分解。

(2)危险特性

- ① 强氧化性:氧化剂和有机过氧化物的突出特性是具有较强的获得电子的能力,即强的氧化性和反应性。在遇到还原剂、有机物时会发生剧烈的氧还原反应,引起燃烧、爆炸,放出反应热。
- ② 易分解性:氧化剂和有机过氧化物均易发生分解放热反应,引起可燃物的燃烧爆炸。尤其是有机过氧化物本身就是可燃物,易发生放热的自加速分解而燃烧、爆炸。
- ③ 燃烧爆炸性:氧化剂多数本身是不可燃的,但能导致或者促进可燃物的燃烧。有机过氧化物本身是可燃物,易着火燃烧,受热分解后更易燃烧爆炸。有机过氧化物比无机氧化剂具有更大的火灾危害性。一些氧化剂遇水易分解放出氧化性气体,遇火源可导致可燃物燃烧。多数氧化剂和有机过氧化物遇酸反应剧烈,甚至发生爆炸,尤其是碱性氧化剂,如过氧化钠、过氧化二苯甲酰等。

(3) 实验室常见的氧化剂及有机过氧化物

氧化剂有: 高氯酸盐、高锰酸盐、重铬酸盐、过氧化物。此外,碱土金属和碱土金属的氯酸盐、硝酸盐、亚硝酸盐、高氧化态金属氧化物以及含有过氧基(一〇一〇一)的无机化合物也属于此类物质。

有机过氧化剂有:过氧化二苯甲酰、过氧化二异丙苯、叔丁基过氧化物、过氧化苯甲酰、过甲酸、过氧化环丙酮。

图 2-8 氧化性物质警示标识

图 2-9 有机过氧化物警示标识

(六)毒性物质和感染性物质

(1) 定义

毒性物质(警示标识如图 2-10): 经吞食、吸入、或皮肤接触后可能造成死亡、严重受伤或健康损害的物质。如氰化钾、氯化汞氢氟酸等。

图 2-10 毒性物质警示标识

感染性物质:含有病原体的物质,如生物制 图 2-10 品、诊断样品、基因突变的微生物、生物体和其 他媒介,如病毒蛋白、病毒株、病理样品、使用过的针头等。

(2) 毒性物质的危险特性

- ① 毒性:毒性是这类物质的主要特征。无论通过口服、吸入,还是皮肤吸入,毒性物质侵入机体后会对机体的功能与健康造成损害,甚至死亡。毒性物质的溶解性越好,其危害越大。这里的溶解性不仅包括水溶性还包括脂溶性。如易溶于水的氯化钡对人体危害大,而难溶的硫酸钡则无毒;具有致癌、生殖、遗传毒性的二噁英就是脂溶性毒品。多数有机毒害品挥发性较强,容易引起吸入中毒。对于固体毒物颗粒越小,分散性越好,越容易通过呼吸道和消化道进入体内。
- ② 隐蔽性 有相当部分的毒性物质没有特殊颜色和气味 容易和面粉、盐、

糖、水、空气等混淆,不易识别和防范。如氰化银,为白色粉末,无臭无味、铊盐溶液为无色透明状液体,容易和水混淆;一氧化碳为无色无味气体等。另一些毒性物质,如苯、四氯化碳、乙醚、硝基苯等蒸气久吸会使人嗅觉减弱,使人放松警惕。

- ③ 易燃易爆性:目前列入危险品的毒害品有500多种,有火灾危险的 占其总数近90%。这些毒害品遇火源和氧化剂容易发生燃烧、爆炸。 对于含硝基和亚硝基的芳香族有机化合物遇高热、撞击等有可能引 起爆炸并分解出有毒气体。
- ④ 遇水、遇酸反应: 大多数毒害品遇酸或酸雾, 会放出有毒的气体, 有的气体还具有易燃和自燃危险性, 有的甚至遇水会发生爆炸。

(3)实验室常见毒害品

无机毒性物质: 有毒气体, 如卤素、卤化氢、氢氰酸、二氧化硫、硫化氢、氨、一氧化碳等; 氰化物, 如 KCN、NaCN等; 砷及其化合物, 如 As2O3; 硒及其化合物, 如 SeO2; 其他, 如汞、锑、氟、铯、铅、钡、磷、铊、碲、及其化合物。有机毒性物质: 卤代烃及其卤化物类, 如氯乙醇、二氯甲烷、光气等; 有机金属化合物类, 如二乙基汞、四乙基铅、硫酸三乙基锡等; 有机磷、硫、砷及腈、胺等化合物类, 如对硫磷、丁腈等; 某些芳香环、稠环及杂环化合物类, 如硝基苯、糠醛等; 天然有机毒品类, 如鸦片、尼古丁等; 其他有毒物质, 如硫酸二甲酯、正硅酸甲酯等。

(七)放射性物质

放射性物质(一级放射性物品警示标识如图 2-11)是指那些能自然向外辐射能量,发出射线(α 射线、 β 射线、 γ 射线及中子流)的物质。一般放射性物质都是原子质量很高的金属,如铀,而其辐射放出的射线对人体的危害很大。有关放射性物质的安全知识详见第五章。

图 2-11 一级放射性物品警示标识

(八)腐蚀性物质

(1) 定义: 通过化学作用使生物组织接触时会造成严重损伤,或在渗漏时会严重损害甚至会破坏其他物质或运输工具的物质。腐蚀性物质(腐蚀品警示标识如图 2-12) 按化学性质分为三类: 酸性腐蚀品、碱性腐蚀品、和其他腐蚀品。

图 2-12 腐蚀品警示标识

(2) 危险特性

- 1) 强烈的腐蚀性:腐蚀性物质的化学性质比较活泼,能和很多金属、有机化合物、动植物机体等发生化学反应,从而灼伤人体组织,对金属、动植物机体、纤维制品等具有强烈的腐蚀作用。腐蚀品中的酸能与大多数金属反应,溶解金属;酸还能和非金属发生作用。腐蚀品中的强碱也能腐蚀某些金属和非金属。
- 2)毒性:多数腐蚀品有不同程度的毒性,有的还是剧毒品,如氢氟酸、重铬酸钠等。
- 3) 易燃性: 许多有机腐蚀物品都具有易燃性, 这是由于它们本身的组成和分子结构决定的, 如冰醋酸、甲酸、苯甲酰氯、丙烯酸等接触火源时会引起燃烧。
- 4) 氧化性:腐蚀品中有些物质具有很强的氧化性,其中多数是含氧酸和酸酐,如浓硫酸、硝酸、氯酸、高锰酸、铬酸酐等。当强氧化性的腐蚀品接触木屑、食糖、纱布等可燃物时,会发生氧化反应,引起燃烧、爆炸。

(3)实验室常见腐蚀品

酸性腐蚀品有:硝酸、硫酸、氢氟酸、氢溴酸、高氯酸、王水、乙酸酐、 氯磺酸、三氧化硫、五氧化二磷、酰氯等;

碱性腐蚀品有: 氢氧化钠、氢氧化钙、氢氧化钾、硫氢化钙、硫化钠、

烷基醇钠、水合肼、有机胺类及有机铵盐类等:

其他腐蚀品苯基二氯化磷氯甲酸苄酯、二氯乙醛氟化氢钾、氟化氢铵、氟化铬等。

(九)杂项危险物质和物品

杂项危险物质和物品(杂项危险品警示标识如图 2-13)是指未被其他类别收录的危险物质和物品。主要包括三类。

(1) 危害环境的物质

危害环境的物质, 如海洋污染物、水生 环境危害物质。

图 2-13 杂项危险物品警示标识

(2) 在高温下运输或提交的物质

在高温下运输或提交的物质,如运输或要求运输的高温物质,液态温度达到或超过 100°C,或固态温度达到或超过 240°C。

(3) 经过基因修改的微生物或组织

经过基因修改的微生物或组织不属感染性物质,但可以非正常的天然繁殖结果的方式改变动物、植物或微生物物质。

其他的如强磁性物品 白石棉干冰 鋰电池组可危害健康的超细粉尘, 具有较弱的燃烧或腐蚀性能的物质等均属于此项。

2.1.3 化学品危险性公示

危险化学品具有不同程度的危险性,如果生产、使用、储存、运输和废弃过程中操作人员对其接触的危险化学品性质和危害不了解,未按照规定的程序和方法操作,将会带来严重的后果。所以国家法规和标准都对化学品危险性的公示进行了明确的要求。国务院第591号令《危险化学品安全管理条例》规定危险化学品的生产和经营(含储存、使用)应提供化学品安全技术说明书和化学品安全标签(一书一签)。《GB

13690-2009 化学品分类和危险性公示 通则》及其系列标准、《GB/T 16483-2008 化学品安全技术说明书 内容和项目顺序》、《GB 15258-2009 化学品安全标签编写规定》、《AQ 3047-2013 化学品作业场所安全警示标志规范》都对化学品全生命周期的各个环节的危险性公示进行了规范。要求生产和经营单位提供化学品的安全技术说明书和化学品安全标签,使用单位在化学品使用场所的设置安全警示标志。

1) 化学品安全技术说明书

化学品安全技术说明书 (MSDS 或 SDS) 是化学品生产商和经销商按法律要求必须提供的化学品理化特性 (如 PH值,闪点,易燃度,反应活性等)、毒性、环境危害、以及对使用者健康 (如致癌,致畸等)可能产生危害的一份综合性文件。它包括危险化学品的燃、爆性能,毒性和环境危害,以及安全使用、泄漏应急救护处置、主要理化参数、法律法规等方面信息的综合性文件。

化学品安全技术说明书包括化学品及企业标识、成分/组成信息、危险性概述、急救措施、消防措施、泄漏应急处理、操作处置与储存、接触控制/个体防护、理化特征、稳定性和反应性、毒理学资料、生态学资料、废弃处置、运输信息、法规信息、其它信息共16个部分。详细信息可参考《GB/T 16483-2008 化学品安全技术说明书内容和项目顺序》的要求。

2) 化学品安全标签

危险化学品安全标签是指危险化学品在市场上流通时由生产销售单位提供的附在化学品包装上的标签,是向作业人员传递安全信息的一种载体,它用简单、易于理解的文字和图形表述有关化学品的危险特性及其安全处置的注意事项,警示作业人员进行安全操作和处置。

《GB 15258-2009 化学品安全标签编写规定》规定化学品安全标签应包括物质名称、编号、危险性标志、警示词、危险性概述、安全措施、灭火方法、生产厂家、地址、电话、应急咨询电话、提示参阅安全技术说明书等内容。危险化学品安全标签的样式及基本内容。化学品安全标签样例见图 2-14。

对于小于或等于 100mL 的化学品小包装, 为方便标签使用, 安全标签可简化为化学品标识、象形图、信号词、危险性说明、应急咨询电话、供应商名称和联系电话以及资料参阅提示语即可。简化标签样例参见图 2~15。



图 2-14 化学品安全标签样例

图 2-15 化学品简化标签样例

3) 化学品作业场所安全警示标识

化学品作业场所安全警示标志以文字和图形符号组合的型式,表示化学品在工作场所所具的危险性和安全注意事项。标志要素包括化学品标识、理化特性、危险象形图、警示词、危险性说明、防范说明、防护用品说明、资料参阅提示语以及报警电话等。化学品作业场所安全警示标识样例见图 2-16。

图 2-16 化学品作业场所安全警示标示样例

2.2 易制爆化学品

2.2.1 易制爆化学品定义

易制爆是指化学品可以作为原料或辅料而制成爆炸品的性质。易制爆化学品通常包括:强氧化剂,可/易燃物,强还原剂,部分有机物。

2.2.2 常见易制爆化学品及分类

- (1) 高氯酸、高氯酸盐及氯酸盐,如:高氯酸(含酸 50%-72%),氯酸钾,氯酸钠, 高氯酸钾,高氯酸锂,高氯酸铵,高氯酸钠;
- (2) 硝酸及硝酸盐类,如: 硝酸(含硝酸≥70%),硝酸钾,硝酸钡,硝酸锶,硝酸钠, 硝酸银,硝酸铅,硝酸镍,硝酸镁,硝酸钙,硝酸锌,硝酸铯;
- (3) 硝基类化合物,如:硝基甲烷,硝基乙烷,硝化纤维素,硝基萘类化合物,硝基苯类化合物,硝基苯酚(邻、间、对)类化合物,硝基苯胺类化合物,2,4-二硝基甲苯,2,6-二硝基甲苯,二硝基(苯)酚(干的或含水<15%),二硝基(苯)酚碱金属盐(干的或含水<15%),二硝基间苯二酚(干的或含水<15%);
- (5) 燃料还原剂类,如:环六亚甲基四胺(乌洛托品),甲胺(无水),乙二胺,硫磺, 铝粉(未涂层的),金属锂,金属钠,金属钾,金属锆粉(干燥的),锑粉,镁粉(发火的),镁合金粉,锌粉或锌尘(发火的),硅铝粉,硼氢化钠,硼氢化锂, 硼氢化钾;
- (6) 其他, 如, 苦氨酸钠(含水≥20%), 高锰酸钠, 高锰酸钾。

 \cdot 29 \cdot \cdot 30 \cdot

2.3 易制毒化学品

2.3.1 易制毒化学品定义

易制毒化学品是指国家规定管制的可用于制造毒品的前体、原料和化学助剂等物质。 简单来说,易制毒化学品就是指国家规定管制的可用于制造麻醉药品和精神药品的原料和配剂,既广泛应用于工农业生产和群众日常生活,流入非法渠道又可用于制造毒品。

2.3.2 常见易制毒化学品及分类

表 2-2 列出了易制毒化学品的分类和品种目录。2012 年 9 月 15 日前, 我国列管了三类 24 个品种, 第一类主要用于制造毒品的原料, 第二类、第三类主要是用于制造毒品的配剂。

表 2-2 易制毒化学品的分类和品种目录

序号	第一类	序号	第二类
1	1- 苯基 -2- 丙酮	1	苯乙酸
2	3,4-亚甲基二氧苯基-2-丙酮	2	醋酸酐
3	胡椒醛	3	三氯甲烷
4	黄樟素	4	乙醚
5	黄樟油	5	哌啶
6	异黄樟素	序号	第三类
7	N-乙酰邻氨基苯酸	1	甲苯
8	邻氨基苯甲酸	2	丙酮
9	麦角酸*	3	甲基乙基酮
10	麦角胺*	4	高锰酸钾
11	麦角新碱*	5	硫酸
12	麻黄素、伪麻黄素、消旋麻黄素、去甲麻黄素、甲基麻黄素、麻黄浸膏、麻黄浸膏粉等麻黄素类物质*	6	盐酸
13	邻氯苯基环戊酮		

说明: (1) 第一类、第二类所列物质可能存在的盐类,也纳入管制; (2) 带有*标记的品种为第一类中的药品类易制毒化学品,第一类中的药品类易制毒化学品包括原料药及其单方制剂。

2.3.3 管制易制毒药品的重要性

易制毒化学品,是指国家规定管制的可用于制造麻醉药品和精神药物的化学原料及配剂,具有合法用途和非法用途的双重性质。我国是一个化工大国,1988 年联合国制定的《禁止非法贩运麻醉药品和精神药物公约》中列管的 23 种易制毒化学品在我国均有生产。自上个世纪九十年代以来,随着冰毒、摇头丸等合成毒品滥用问题的不断发展蔓延,我国易制毒化学品流入非法渠道用于制毒问题也日益严重。

- (1) 易制毒化学品流入国内地下毒品加工厂问题严重。流入地下毒品加工厂的 苯基丙酮、麻黄素、丙酮、甲苯、盐酸、硫酸等易制毒化学品多数来自国内。
- (2)流入"金三角"地区的易制毒化学品不断增加。国内外毒贩聚集中国边境地区将醋酸酐、三氯甲烷、乙醚、盐酸等制造海洛因的易制毒化学品走私出境。
- (3) 胡椒基甲基酮、苯基丙酮从广东走私到荷兰、比利时、波兰等欧洲国家的大案时有发生。
- (4)用于制造冰毒的易制毒化学品走私到东南亚地区成为新的趋势。随着中国 打击制贩冰毒犯罪力度的加大,毒贩开始将地下毒品加工厂转移到东南亚 地区。

2.4 剧毒化学品

2.4.1 剧毒化学品定义

剧毒化学品是指具有剧烈急性毒性危害的化学品,包括人工合成的化学品及其混合物和天然毒素,还包括具有急性毒性易造成公共安全危害的化学品。列入国家

危险化学品目录,符合剧毒化学品判定标准,被标注为剧毒的危险化学品。

剧烈急性毒性判定界限: 急性毒性类别 1, 即满足下列条件之一: 大鼠实验, 经口 LD50 \leq 5mg/kg, 经皮 LD50 \leq 50mg/kg, 吸入(4h)LC50 \leq 100ml/m3(气体)或 0.5mg/L(蒸气)或 0.05mg/L(尘、雾)。经皮 LD50 的实验数据,也可使用兔实验数据。

2.4.2 常见剧毒化学品及分类

根据最新的《危险化学品目录(2015版)》,目前被列入目录且定义为剧毒化学品的有148种。高校实验室常见的如氰化物、碳酰氯、异氰酸酯类物质、磷酸酯类物、氟乙酸化合物等。

表 2-3 剧毒化学品目录 (摘自《危险物品化学品目录 (2015 版)》)

重编 序号	原始 品名	品名	别名	CAS 号	备注
1	4	5- 氨基 -3- 苯基 -1-[双 (N, N-二甲基氨基氧膦 基)]-1, 2, 4-三唑 [含量> 20%]	威菌磷	1031-47-6	剧毒
2	20	3- 氨基丙烯	烯丙胺	107-11-9	剧毒
3	40	八氟异丁烯	全氟异丁烯; 1, 1, 3, 3, 3- 五氟 -2-(三氟甲 基)-1- 丙烯	382-21-8	剧毒
4	41	八甲基焦磷酰胺	八甲磷	152-16-9	剧毒
5	42	1,3,4,5,6,7,8,8-八氯-1, 3, 3a, 4, 7, 7a- 六氢 -4, 7- 甲撑异苯并呋喃 [含量> 1%]		297–78–9	剧毒

重编 序号	原始 品名	品名	别名	CAS 믘	备注
6	71	苯基硫醇	苯硫酚; 巯基苯; 硫代苯酚	108-98-5	剧毒
7	88	苯胂化二氯	二氯化苯胂; 二氯苯胂	696-28-6	剧毒
8	99	1-(3- 吡啶甲基)-3-(4- 硝基苯基) 脲	1-(4- 硝基苯基)-3- (3- 吡啶基甲基) 脲; 灭鼠优	53558-25-1	剧毒
9	121	丙腈	乙基氰	107-12-0	剧毒
10	123	2- 丙炔 -1- 醇	丙炔醇; 炔丙醇	107-19-7	剧毒
11	138	丙酮氰醇	丙酮合氰化氢; 2- 羟基 异丁腈; 氰丙醇	75-86-5	剧毒
12	141	2- 丙烯 -1- 醇	烯丙醇; 蒜醇; 乙烯甲醇	107-18-6	剧毒
13	155	丙烯亚胺	2-甲基氮丙啶; 2-甲基乙撑亚胺; 丙撑亚胺	75-55-8	剧毒
14	217	叠氮化钠	三氮化钠	26628-22-8	剧毒
15	241	3-丁烯 -2- 酮	甲基乙烯基酮; 丁烯酮	78-94-4	剧毒
16	258	1-(对氯苯基)-2, 8, 9- 三氧-5- 氮-1- 硅双环 (3, 3, 3) 十二烷	毒鼠硅; 氯硅宁; 硅灭 鼠	29025-67-0	剧毒
17	321	2-(二苯基乙酰基)-2,3-二氢-1,3-茚二酮	2-(2, 2-二苯基乙酰基)-1, 3-茚满二酮; 敌鼠	82-66-6	剧毒
18	339	1, 3-二氟丙 -2- 醇(l) 与 1- 氯 -3- 氟丙 -2- 醇 (ll)的混合物	鼠甘伏; 甘氟	8065-71-2	剧毒
19	340	二氟化氧	一氧化二氟	7783-41-7	剧毒
20	367	O-O-二甲基-O-(2-甲氧甲酰基-1-甲基)乙烯基磷酸酯[含量>5%]		7786-34-7	剧毒

 \cdot 33 \cdot \cdot 34 \cdot

重编 序号	原始 品名	品名	别名	CAS 믘	备注
21	385	二甲基 -4-(甲基硫代)苯 基磷酸酯	甲硫磷	3254-63-5	剧毒
22	393	(E)-O, O-二甲基-O-[1-甲基-2-(二甲基氨基甲酰)乙烯基]磷酸酯[含量>25%]	3-二甲氧基磷氧基-N, N-二甲基异丁烯酰胺; 百治磷	141-66-2	剧毒
23	394	O, O-二甲基-O-[1-甲基-2-(甲基氨基甲酰)乙烯基]磷酸酯[含量>0.5%]	久效磷	6923-22-4	剧毒
24	410	N,N-二甲基氨基乙腈	2-(二甲氨基)乙腈	926-64-7	剧毒
25	434	O, O-二甲基 - 对硝基苯 基磷酸酯	甲基对氧磷	950-35-6	剧毒
26	461	1, 1-二甲基肼	二甲基肼 [不对称]; N, N−二甲基肼	57-14-7	剧毒
27	462	1, 2-二甲基肼	二甲基肼 [对称]	540-73-8	剧毒
28	463	O, O'-二甲基硫代磷酰氯	二甲基硫代磷酰氯	2524-03-0	剧毒
29	481	二甲双胍	双甲胍; 马钱子碱	57-24-9	剧毒
30	486	二甲氧基马钱子碱	番木鳖碱	357-57-3	剧毒
31	568	2, 3-二氢 -2, 2-二甲基苯并呋喃 -7-基 -N-甲基氨基甲酸酯		1563-66-2	剧毒
32	572	2,6-二噻-1,3,5,7-四 氮三环-[3,3,1,1,3,7] 癸烷-2, 2,6,6-四氧化物	毒鼠强	1980/12/6	剧毒
33	648	S-[2-(二乙氨基)乙基]-O, O-二乙基硫赶磷酸酯	胺吸磷	78-53-5	剧毒
34	649	N-二乙氨基乙基氯	2- 氯乙基二乙胺	100-35-6	剧毒
35	654	O, O-二乙基 -N-(1, 3- 二硫戊环 -2- 亚基) 磷酰 胺[含量>15%]	2-(二乙氧基磷酰亚氨基)-1,3-二硫戊环; 硫环磷	947-02-4	剧毒

重编 序号	原始 品名	品名	别名	CAS 믘	备注
36	655	O, O-二乙基-N-(4-甲基-1, 3-二硫戊环-2-亚基)磷酰胺[含量>5%]		950-10-7	剧毒
37	656	O, O-二乙基-N-1, 3-二 噻丁环-2-亚基磷酰胺	丁硫环磷	21548-32-3	剧毒
38	658	O, O-二乙基-O-(2-乙 硫基乙基) 硫代磷酸酯与O, O-二乙基-S-(2-乙硫基 乙基) 硫代磷酸酯的混合物 [含量>3%]	内吸磷	8065-48-3	剧毒
39	660	O, O-二乙基-O-(4-甲 基香豆素基-7) 硫代磷酸酯	扑杀磷	299-45-6	剧毒
40	661	O, O-二乙基-O-(4-硝 基苯基)磷酸酯	对氧磷	311-45-5	剧毒
41	662	O, O-二乙基-O-(4-硝 基苯基) 硫代磷酸酯 [含量 >4%]	对硫磷	56-38-2	剧毒
42	665	O, O-二乙基-O-[2- 氯-1-(2, 4-二氯苯基) 乙 烯基] 磷酸酯 [含量> 20%]	苯基)乙烯基二乙基磷	470-90-6	剧毒
43	667	O, O-二乙基-O-2- 吡嗪 基硫代磷酸酯 [含量> 5%]	虫线磷	297-97-2	剧毒
44	672	O, O-二乙基-S-(2-乙 硫基乙基)二硫代磷酸酯 [含量>15%]	乙拌磷	298-04-4	剧毒
45	673	O, O-二乙基-S-(4-甲 基亚磺酰基苯基) 硫代磷酸酯 [含量> 4%]	丰索磷	115-90-2	剧毒
46	675	O, O-二乙基 -S-(对硝基 苯基) 硫代磷酸	硫代磷酸 -O, O-二乙 基 -S-(4-硝基苯基) 酯	3270-86-8	剧毒

· 35 · · · 36 ·

重编 序号	原始 品名	品名	别名	CAS 믘	备注
47	676	O, O-二乙基-S-(乙硫基甲基)二硫代磷酸酯	甲拌磷	298-02-2	剧毒
48	677	O, O-二乙基 -S-(异丙基 氨基甲酰甲基) 二硫代磷酸 酯 [含量> 15%]	发硫磷	2275-18-5	剧毒
49	679	O, O-二乙基-S-氯甲基二硫代磷酸酯 [含量> 15%]	氯甲硫磷	24934-91-6	剧毒
50	680	O, O-二乙基-S-叔丁基 硫甲基二硫代磷酸酯	特丁硫磷	13071-79-9	剧毒
51	692	二乙基汞	二乙汞	627-44-1	剧毒
52	732	氟		7782-41-4	剧毒
53	780	氟乙酸	氟醋酸	144-49-0	剧毒
54	783	氟乙酸甲酯		453-18-9	剧毒
55	784	氟乙酸钠	氟醋酸钠	62-74-8	剧毒
56	788	氟乙酰胺		640-19-7	剧毒
57	849	癸硼烷	十硼烷; 十硼氢	17702-41-9	剧毒
58	1008	4- 己烯 -1- 炔 -3- 醇		10138-60-0	剧毒
59	1041	3-(1- 甲基 -2- 四氢吡咯 基) 吡啶硫酸盐	硫酸化烟碱	65-30-5	剧毒
60	1071	2- 甲基 -4, 6- 二硝基酚	4,6-二硝基邻甲苯酚; 二硝酚	534-52-1	剧毒
61	1079	O- 甲基 -S- 甲基 - 硫代 磷酰胺	甲胺磷	10265-92-6	剧毒
62	1081	O- 甲基氨基甲酰基 -2- 甲基 -2-(甲硫基) 丙醛肟	涕灭威	116-06-3	剧毒
63	1082	O-甲基氨基甲酰基 -3,3- 二甲基 -1-(甲硫基)丁醛 肟	O-甲基氨基甲酰 基-3,3-二甲基-1-(甲 硫基)丁醛肟;久效威	39196-18-4	剧毒

重编 序号	原始 品名	品名	別名	CAS 号	备注
64	1097	(S)-3-(1- 甲基吡咯烷 -2- 基) 吡啶	烟碱; 尼古丁; 1- 甲基 -2-(3- 吡啶基) 吡咯烷	1954/11/5	剧毒
65	1126	甲基磺酰氯	氯化硫酰甲烷; 甲烷磺 酰氯	124-63-0	剧毒
66	1128	甲基肼	一甲肼; 甲基联氨	60-34-4	剧毒
67	1189	甲烷磺酰氟	甲磺氟酰; 甲基磺酰氟	558-25-8	剧毒
68	1202	甲藻毒素 (二盐酸盐)	石房蛤毒素(盐酸盐)	35523-89-8	剧毒
69	1236	抗霉素 A		1397-94-0	剧毒
70	1248	镰刀菌酮 X		23255-69-8	剧毒
71	1266	磷化氢	磷化三氢; 膦	7803-51-2	剧毒
72	1278	硫代磷酰氯	硫代氯化磷酰;三氯化 硫磷;三氯硫磷	3982-91-0	剧毒
73	1327	硫酸三乙基锡		57-52-3	剧毒
74	1328	硫酸铊	硫酸亚铊	7446-18-6	剧毒
75	1332	六氟 -2, 3-二氯 -2-丁烯	2, 3-二氯六氟 -2-丁 烯	303-04-8	剧毒
76	1351	(1R, 4S, 4aS, 5R, 6R, 7S, 8S, 8aR)-1, 2, 3, 4, 10,10-六氯-1,4,4a,5,6, 7&8a-八氢-6,7-环氧-1, 4, 5, 8-二亚甲基萘 [含量 2% ~ 90%]	狄氏剂	60–57–1	剧毒
77	1352	(1R,4S,5R,8S)-1,2,3,4, 10,10-六氯-1 <i>A,A</i> a,5,6,7,8, 8a-八氢-6,7-环氧-1,4,5, 8-二亚甲基萘 [含量> 5%]	并狄匹剂	72-20-8	剧毒

• 37 • • 38 •

重编 序号	原始 品名	品名	别名	CAS 号	备注
78	1353	1, 2, 3, 4, 10, 10- 六氯-1, 4, 4a, 5, 8, 8a- 六氢-1, 4- 挂-5, 8- 挂二亚甲基萘 [含量> 10%]	异艾氏剂	465-73-6	剧毒
79	1354	1,2,3,4,10,10- 六氯-1,4,4a,5,8,8a- 六氢-1,4;5,8- 桥,挂-二甲撑萘 [含量>75%]		309-00-2	剧毒
80	1358	六氯环戊二烯	全氯环戊二烯	77-47-4	剧毒
81	1381	氯	液氯; 氯气	7782-50-5	剧毒
82	1422	2-[(RS)-2-(4- 氯苯基)-2-苯基乙酰基]-2,3-二氢-1,3-茚二酮[含量>4%]	2-(苯基对氯苯基乙 酰)茚满-1,3-二酮; 氯鼠酮	3691-35-8	剧毒
83	1442	氯代膦酸二乙酯	氯化磷酸二乙酯	814-49-3	剧毒
84	1464	氯化汞	氯化高汞; 二氯化汞; 升汞	7487-94-7	剧毒
85	1476	氯化氰	氰化氯; 氯甲腈	506-77-4	剧毒
86	1502	氯甲基甲醚	甲基氯甲醚; 氯二甲醚	107-30-2	剧毒
87	1509	氯甲酸甲酯	氯碳酸甲酯	79-22-1	剧毒
88	1513	氯甲酸乙酯	氯碳酸乙酯	541-41-3	剧毒
89	1549	2- 氯乙醇	乙撑氯醇; 氯乙醇	107-07-3	剧毒
90	1637	2- 羟基丙腈	乳腈	78-97-7	剧毒
91	1642	羟基乙腈	乙醇腈	107-16-4	剧毒
92	1646	羟间唑啉 (盐酸盐)		2315/2/8	剧毒
93	1677	氰胍甲汞	氰甲汞胍	502-39-6	剧毒
94	1681	氰化镉		542-83-6	剧毒
95	1686	氰化钾	山奈钾	151-50-8	剧毒

重编 序号	原始 品名	品名	别名	CAS 号	备注
96	1688	氰化钠	山奈	143-33-9	剧毒
97	1693	氰化氢	无水氢氰酸	74-90-8	剧毒
98	1704	氰化银钾	银氰化钾	506-61-6	剧毒
99	1723	全氯甲硫醇	三氯硫氯甲烷;过氯甲硫醇;四氯硫代碳酰	594-42-3	剧毒
100	1735	乳酸苯汞三乙醇铵		23319-66-6	剧毒
101	1854	三氯硝基甲烷	氯化苦; 硝基三氯甲烷	1976/6/2	剧毒
102	1912	三氧化二砷	白砒; 砒霜; 亚砷酸酐	1327-53-3	剧毒
103	1923	三正丁胺	三丁胺	102-82-9	剧毒
104	1927	砷化氢	砷化三氢; 胂	7784-42-1	剧毒
105	1998	双 (1- 甲基乙基) 氟磷酸酯	二异丙基氟磷酸酯; 丙 氟磷	55-91-4	剧毒
106	1999	双 (2- 氯乙基) 甲胺	氮芥;双(氯乙基)甲胺	51-75-2	剧毒
107	2000	5-[(双(2-氯乙基)氨基]-2, 4-(1H, 3H) 嘧啶二酮	尿嘧啶芳芥; 嘧啶苯芥	66-75-1	剧毒
108	2003	O,O-双(4-氯苯基)N-(1- 亚氨基)乙基硫代磷酸胺	毒鼠磷	4104-14-7	剧毒
109	2005	双 (二甲胺基)磷酰氟 [含量> 2%]	甲氟磷	115-26-4	剧毒
110	2047	2, 3, 7, 8- 四氯二苯并对 二噁英	二噁英 2,3,7,8-TCDD, 四氯二苯二噁英	1746-01-6	剧毒
111	2067	3-(1, 2, 3, 4- 四氢 -1- 萘基)-4- 羟基香豆素	杀鼠醚	5836-29-3	剧毒
112	2078	四硝基甲烷		509-14-8	剧毒
113	2087	四氧化锇	锇酸酐	20816-12-0	剧毒
114	2091	O, O, O', O'- 四乙基二硫 代焦磷酸酯	治螟磷	3689-24-5	剧毒

· 39 · · · · 40 ·

重编 序号	原始 品名	品名	別名	CAS 믘	备注
115	2092	四乙基焦磷酸酯	特普	107-49-3	剧毒
116	2093	四乙基铅	发动机燃料抗爆混合物	78-00-2	剧毒
117	2115	碳酰氯	光气	75-44-5	剧毒
118	2118	羰基镍	四羰基镍; 四碳酰镍	13463-39-3	剧毒
119	2133	乌头碱	附子精	302-27-2	剧毒
120	2138	五氟化氯		13637-63-3	剧毒
121	2144	五氯苯酚	五氯酚	87-86-5	剧毒
122	2147	2, 3, 4, 7, 8- 五氯二苯并 呋喃	2, 3, 4, 7, 8-PCDF	57117-31-4	剧毒
123	2153	五氯化锑	过氯化锑; 氯化锑	7647-18-9	剧毒
124	2157	五羰基铁	羰基铁	13463-40-6	剧毒
125	2163	五氧化二砷	砷酸酐; 五氧化砷; 氧 化砷	1303-28-2	剧毒
126	2177	戊硼烷	五硼烷	19624-22-7	剧毒
127	2198	硒酸钠		13410-01-0	剧毒
128	2222	2- 硝基 -4- 甲氧基苯胺	枣红色基 GP	96-96-8	剧毒
129	2413	3-[3-(4'- 溴联苯 -4- 基)-1, 2, 3, 4- 四氢 -1- 萘基]-4- 羟基香豆素	溴鼠灵	56073-10-0	剧毒
130	2414	3-[3-(4- 溴联苯 -4- 基)-3- 羟基 -1- 苯丙 基]-4- 羟基香豆素	溴敌隆	28772-56-7	剧毒
131	2460	亚砷酸钙	亚砒酸钙	27152-57-4	剧毒
132	2477	亚硒酸氢钠	重亚硒酸钠	7782-82-3	剧毒
133	2527	盐酸吐根碱	盐酸依米丁	316-42-7	剧毒
134	2533	氧化汞	一氧化汞; 黄降汞; 红 降汞	21908-53-2	剧毒

重编 序号	原始 品名	品名	别名	CAS 믘	备注
135	2549	一氟乙酸对溴苯胺		351-05-3	剧毒
136	2567	乙撑亚胺	吖丙啶 1-氮杂环丙烷 氮丙啶	151-56-4	剧毒
137	2588	O-乙基-O-(4-硝基苯基)苯基硫代膦酸酯[含量>15%]	苯硫膦	2104-64-5	剧毒
138	2593	O-乙基-S-苯基乙基二硫代膦酸酯 [含量> 6%]	地虫硫膦	944-22-9	剧毒
139	2626	乙硼烷	二硼烷	19287-45-7	剧毒
140	2635	乙酸汞	乙酸高汞; 醋酸汞	1600-27-7	剧毒
141	2637	乙酸甲氧基乙基汞	醋酸甲氧基乙基汞	151-38-2	剧毒
142	2642	乙酸三甲基锡	醋酸三甲基锡	1118-14-5	剧毒
143	2643	乙酸三乙基锡	三乙基乙酸锡	1907-13-7	剧毒
144	2665	乙烯砜	二乙烯砜	77-77-0	剧毒
145	2671	N-乙烯基乙撑亚胺	N-乙烯基氮丙环	5628-99-9	剧毒
146	2685	1- 异丙基 -3- 甲基吡唑 -5- 基 N, N-二甲基氨基甲酸酯 [含量> 20%]	异索威	119-38-0	剧毒
147	2718	异氰酸苯酯	苯基异氰酸酯	103-71-9	剧毒
148	2723	异氰酸甲酯	甲基异氰酸酯	624-83-9	剧毒

2.4.3 剧毒化学品危害及管控重要性

由于剧毒化学品危害性大,极易造成公共安全危害,近年来高校和社会上因剧毒化学品导致的案件更是让剧毒化学品管控日趋严格。《危险化学品安全管理条例》(国务院令第591号)、《剧毒化学品购买和公路运输许可证件管理办法》(公安部第77号令)、《剧毒化学品、放射源存放场所治安防范要求》(GA1002-2012)等

国家法律法规、标准规发对其生产、储存、运输、使用和废弃物处置都有明确的规定。生产、科研、医疗等单位经常使用剧毒化学品的,应当向设区的市级人民政府公安部门申请领取购买凭证,凭购买凭证购买,个人严禁购买! 剧毒化学品应当在专用仓库内单独存放,设置各种治安防范设施(入侵报警装置、视频监控装置、保卫值班室和监控中心等),并实行双人收发、双人保管制度。

2.5 危险化学品的采购、存储、使用管理安全

2.5.1 危险化学品采购注意事项

采购化学品时,应该谨慎。购买化学品不仅是经济行为,还是一个安全、环保,甚至涉及法律的问题。申购时应该严格遵守华南理工大学关于剧毒、易制爆、易制毒化学品申购的相关规定,申购流程如图 2-18,关注扫二维码(如图 2-17)进行了解。同时可登陆 http://202.38.194.184:9000/lsmp/进入实验室安全管理平台了解各类安全知识、制度、办事流程。

同时购买时还应考虑以下问题:

(1)该药品是否是实验必须的,能否用更安全、低毒的试剂替代;

- (2)本实验室或者课题组中是否还有未 **申购流程扫一扫 申购表格扫一扫** 用的该药品。查找一下,或者询问药 图 2-17 申购流程、申购表格二维码品管理员或其他同学。尽量避免重复购买:
- (3)满足实验需求的最小剂量是多少。不要购买多余的药品,无用的药品不仅 占用空间,还可能成为实验室的危险废物;

使用人填写"华南理工大学剧毒、易制爆、易制毒化学品申购表"

使用单位主管签字、盖章(公章)

保卫处部门负责人签字、盖章(公章)

实验室与设备管理处部门负责人签字、盖章(公章)并发放"易制毒化学品回收记录卡"

凭 "华南理工大学剧毒易制毒化学品申购表"和 "易制毒化学品回收记录卡" 到后勤化学品仓库购买

使用单位使用完后勤化学品仓库易制毒化学品后,将连同瓶子和"易制毒化学品回收记录卡"一并送到后勤化学品仓库进行单独回收、后勤经办人签字确认

使用单位将后勤经办人签字的"易制毒化学品回收记录卡"送到实验室与设备管理外

图 2-18 剧毒、易制爆、易制毒化学品申购流程

- (4)了解该化学药品的基本物理化学性质及安全特性以及储存和防护措施。本实验室是否具有存储条件和防护设备;
- (5)需要购买的药品是否属于易制毒、剧毒或易制爆化学品。国家对这三类化 学品的生产、经营、购买、运输和进口、出口实行分类管理和许可制度。购 买时应严格按照国家法规、法律执行:
- (6) 购买渠道是否正规。不要通过非正规渠道购买化学药品,否则出现质量或经济纠纷,不受法律保护:
- (7) 实验产生的废物的性质和正确处置方法。

2.5.2 危险化学品存储注意事项

(一)一般原则

(1)建立试剂台账: 清点存量、避免浪费、 合理使用:

(2) 做好标识工作: 化学试剂、 溶液的 标签(如图 2-19)需有信息,比如 名称、性质、责任人、时间;

	试剂	(溶液)	标签
名	称:		
浓	度:		
责(E 人:		
自用	日期:		
贮存	条件:		

图 2-19 试剂(溶液)标签

(3) 合理存放化学品: 1) 存放点必须通风、隔热、安全; 2) 分类摆放, 避免混放, 摆放整齐、清洁: 3)实验室不存放大桶试剂和大量试剂: 4)不得无盖放置(污 染空气);

- (4)及时清理:及时清理销毁过期和废弃的化学品。
- (二)不同危险化学品的存放原则
- (1) 易燃液体: 远离火源, 阴凉干燥处避光保存, 通风良好, 不装满瓶, 最好保 存于防爆冰箱内;
- (2) 腐蚀液体, 选用耐腐蚀材料的药品柜存放试剂, 并将腐蚀性液体置于药品 柜下方;
- (3) 剧毒品: 放置于保险柜中, 双人双锁;
- (4)易燃易爆类固体:与易燃物、氧化剂隔离存放,以低温存储,选用防爆材料架;
- (5) 需低温储存的化学品: 易存于 10℃以下, 如苯乙烯、丙烯腈、乙烯基乙炔、 甲基丙烯酸甲酯、氢氧化铵;
- (6)特殊存放的化学品: 钾、钠等碱性金属(储存于煤油中), 黄磷(储存于水中), 苦味酸(保湿存),镁和铝(避潮保存),易潮物和易水解物(储存于干燥处, 封口应严密),双氧水(储存于塑胶瓶中,外包黑纸)。
- (三)不同危险化学品的存放原则

		表 2-4 常见化学品存放的禁忌物表
序号	化学品	存放禁忌物
1	硫酸	铬, 高氯酸眼, 高锰酸盐
2	硝酸	乙酸, 苯胺, 铬酸, 氢氰酸, 硫化氢, 易燃性液体, 易燃性气体等易燃物质和可硝化物质(其中浓硝酸不能与丙酮, 乙醇共存, 会发生反应)
3	草酸	银、汞
4	高氯酸	乙酸酐, 铋和它的合金, 乙醇, 纸, 木材, 润滑脂, 油
5	氢氰酸	酸类,碱类,氧化剂
6	醋酸	铬酸,硝酸,含羟基化合物,乙烯,甘醇,高氯酸,过氧化物,高锰酸钾
7	铬酸	乙酸,萘,樟脑,甘油,松节油,乙醇和其他易燃物质
8	碱和碱土金属	水、二氧化碳, 四氯化碳和其他氯代烃
9	硝酸铵	各类酸, 金属粉末, 易燃性液体, 氯酸盐, 亚硝酸盐, 硫磺, 有机物或 易燃性细小颗粒
10	氯酸盐	铵类,各类酸,金属粉末、硫磺以及细碎的有机物、易燃性化合物
11	高氯酸钾	酸(也可参考高氯酸)
12	高锰酸钾	甘油,乙二醇,苯甲醛,硫酸
13	过氧化钠	任何可氧化物质,如乙醇、甲醇、冰醋酸、乙酸酐、苯甲醛、二硫化碳、甘油、乙二醇、乙酸乙酯、乙酸甲酯
14	大部分有机过 氧化物	各类酸(有机或矿物),避免摩擦,冷贮存
15	活性炭	次氯酸钙、所有氧化剂
16	二氧化氯	氨, 甲烷, 磷化氢, 硫化氢
17	过氧化氢	铜, 铬, 铁, 大多数金属及其盐, 任何易燃性液体, 易燃材料和硝基甲烷
18	硫化氢	发烟硝酸,氧化性气体
19	氧气	各类油,润滑脂,氢气,易燃性液体、固体、气体
20	氯气	氨, 乙炔, 丁二烯, 丁烷和其它石油气, 氢气, 乙炔钠, 松节油, 苯和细小粒状金属
21	氟气	所有化学品都要隔离, 需要单独存放
22	丙酮	浓硝酸和浓硫酸的混合物
23	乙炔	氯气, 溴气, 氟气, 铜(管), 银, 汞

序号	化学品	存放禁忌物
24	苯胺	硝酸, 过氧化氢
25	银	乙炔, 酒石酸, 胺类化合物
26	铜	乙炔,过氧化氢,叠氮化合物
27	汞	乙炔,雷汞酸 (HONC) 和氨
28	碘	乙炔,氨(无水或者含水)
29	磷	苛性碱或者还原剂
30	溴	氨, 乙炔, 丁二烯, 丁烷和其他石油气, 乙炔钠, 松节油, 苯, 细小粒状 金属
31	氨(无水)	卤素, 汞, 次氯酸钙和氟化氢
32	烃	卤素, 铬酸, 过氧化物
33	肼	过氧化氢,硝酸,大部分氧化剂

2.5.3 危险化学品使用管理

- (1)严格管理实验室危险化学品,健全危化品管理制度
- (2)严格分库、分类存放,严禁混放、混装,规范操作、相互监督。
- (3)剧毒品管理: 落实"五双"即"双人保管、双人领取、双人使用、双把锁、双本帐" 的管理制度, 剧毒品必须使用专用保险柜。
- 1)剧毒品的使用须有详细的领用、使用、用量、归还记录,并经保管人签名确认;
- 2) 学生使用剧毒品须由老师带领, 临时工作人员不得使用剧毒品;
- 3) 必须佩带个人防护用品, 在通风厨中操作, 做好应急处理预案;
- (5) 提倡绿色化学、建设环境友好型的化学实验室
 - 1) 不用-改用无毒试剂(替代苯、汞、汞盐、氯仿等)
 - 2) 少用-尽量少用有毒、有害化学试剂, 改为小量或半微量型实验
 - 3) 少产-回收、提纯再利用(苯、乙醚、石油醚、丙酮等)

- 4) 少排-危险废气通过吸收装置后排放(氯气、浓盐酸、氨等)
- (6) 使用前: 识别危险, 研读 MSDS, 实验内容做好风险评估, 做好防护准备、实验室准备、安全防护培训。
- (7)使用中:个人防护装备、严格按规程操作,认真观察记录,不擅离岗。
- (8)实验结束:废弃物按规定分类收集、记录相关信息,移交资质公司处理。做好自身清洁,不带污染物离开。

 \cdot 47 \cdot \cdot 48 \cdot

第三章 消防安全

实验室是高校消防安全重点防范部位。一般来讲,实验室火灾事故主要是因为实验室人员消防安全意识淡薄、违规操作及消防安全常识所致。因此,应谨记以"预防为主,防消结合"的消防安全工作方针,掌握基本防火常识和技能,主动预防火灾事故的发生。

3.1 实验室火灾发生的常见隐患

- (1) 实验室管理不到位,导致发生违反安全防火制度的现象。例如,违反规定 在实验室吸烟并乱扔烟头:不按防火要求使用明火,引燃周围易燃物品:
- (2)配电不合理、电气设备超负荷运转,造成电路故障起火,电气线路老化造成短路等;
- (3) 易燃易爆化学品储存或使用不当:
- (4)违反操作规程,或实验操作不当引燃化学反应生成的易燃、易爆气体或液态物质;
- (5) 仪器设备老化, 或者未按要求使用;
- (6)实验室未配备相应的灭火器材,或者缺乏维护造成失效;
- (7)实验室期间脱岗,或实验人员缺乏消防技能,发生事故不能及时处理。

3.2 实验室火灾预防

3.2.1 火灾预防——用电安全

- (1) 电源、插座功率等需与仪器设备的功率匹配;
- (2)接线板不要串接、不要直接放在地面上,不乱拉乱接电线;
- (3) 电源插座或开关必须固定;
- (4) 离开实验室时, 必须关闭电源
- (5)不得使用花线、木质配电或接线板、老化的电线;
- (6) 多个大功率仪器不要共用一个接线板。

3.2.2 火灾预防——谨记常见常见有机液体的易燃性

表 3-1 常见有机液体的闪点

液体名称	闪点 /℃	液体名称	闪点 /℃
乙醚	-45	乙腈	6
四氢呋喃	-14	甲醇	12
二甲基硫醚	-38	乙酰丙酮	34
二硫化碳	-30	乙醇	13
乙醛	-38	异丙苯	44
丙烯醛	-25	苯胺	70
丙酮	-18	正丁醇	29
辛烷	13	异丁醇	24
苯	-11	叔丁醇	11
乙酸乙酯	-4	氯苯	29
甲苯	4	1,4-二氧六环	12
环己烷	-20	石脑油	42
二戊烯	46	樟脑油	47

液体名称	闪点 /℃	液体名称	闪点 /℃
醋酸戊酯	21	汽车汽油	-38
航空汽油	-46	柴油	66
煤油	38	氯苯	29
乙酸乙酯	-4	1,4-二氧六环	12
甲苯	4	石脑油	42
环己烷	-20		

二硫化碳、乙醚、石油醚、苯和丙酮等的闪点都比较低,即使存放在普通冰箱内(冰室最低温度 -18℃, 无电火花消除器), 也能形成可以着火的气氛, 故这类液体不得存放于普通冰箱内。

另外,闪点低液体的蒸汽只需接触红热物体的表面便会着火。其中,二硫化碳尤其危险,即使与暖气散热器或者热灯泡接触,其蒸汽也会着火,应特别小心。

3.2.3 火灾预防——实验室管理

- (1)实验人员要严格执行"实验室十不准",即:1)不准吸烟;2)不准乱放杂物; 3)不准实验时人员脱岗;4)不准堵塞安全通道;5)不准违章使用电热器;6) 不准违章私拉、乱拉接线;7)不准违反操作规程;8)不准将消防器材挪作 他用;9)不准违规存放易燃药品、物品;10)不准做饭、住宿。
- (2)实验人员要清楚所用物质的危险特性和实验过程中的危险性。
- (3) 实验时疏散门、疏散通道要保持通畅。
- (4) 易燃易爆钢瓶必须放置在室外。
- (5)实验室内特殊的电气、高温、高压等危险设备必须有相应的防护措施,应严格按照设备的使用说明及注意事项使用。
- (6)实验人员须熟知"四懂四会",即懂本岗位火灾危险性、懂预防措施、懂扑

救方法、懂逃生方法;会报警、会使用灭火器材、会处理肇事事故、会逃生。

- (7)实验人员在实验过程中不得脱岗。要随时检查实验仪器设备、电路、水、气及管道等设施有无损害和异常现象,并做好安全检查记录。
- (8)从事易燃易爆设备的操作人员必须经公安消防部门培训,考核合格后持证上岗。
- (9) 实验时必须配有防火、防爆、防盗、防破坏的基本设施; 危险化学品应分 类存放; 贵重物品不得在室内随意摆放。
- (10)实验室使用剧毒物品要严格执行"五双"管理制度,并存放在保险柜内。
- (11)实验人员使用药品时,应确实了解药品的物性、化性、毒性及正确使用方法, 严禁将化学性质相抵触的药品混装、混放。实验剩余的药品必须按规定处 置,严禁随意乱放、丢弃垃圾向内或倒入下水道。要针对实验过程中可能发 生的危险,制定安全操作规程,采取适当的防护措施,必要时应参考"物料 安全性数据表"进行操作。
- (12)严禁摆弄与实验无关的设备和药品,特别是电热设备。
- (13)冰箱内不得存放易燃液体,普通烘干箱不准加温加热易燃液体。
- (14)严禁闲杂人员特别是儿童进入实验室,防止因外人的违章行为导致火灾。
- (15)实验结束后,应对各种实验器具、设备和物品进行整理,并进行全面仔细的安全检查,清除易燃物,关闭电源、水源、气源,确认安全后方可离开。

3.3 防火器材

平时要熟知各类常见防火器材的使用方法(表 3-2),当实验室不慎失火时,切 莫惊慌失措,应沉着冷静处理。只要掌握了必要的消防知识,根据现场的情况,选择 合适的灭火器材,一般可以迅速灭火。

表 3-2 常见防火器材及使用方法

灭火器种类	使用原理	适用范围	使用方法
干粉灭火器	利用二氧化碳或 者氮气作为动力, 将干粉灭火剂喷 出灭火	(1) 碳酸氢钠干粉灭火 器适用于易燃、可燃液体、 气体及电器设备的起初灭 火; 磷酸铵盐干粉灭火器出可 用于上述情况外, 还可扑 救固体类物质的起初火灾	使用前将灭火器上下 颠倒几次,使筒内干粉 松动,然后将喷嘴对准 燃烧最猛烈处,拔去保 险销,压下压把
二氧化碳灭火器	二氧化碳不能燃烧,也不能支持燃烧的性质碳喷出	适用于扑救精密仪器、 600 伏以下电气设备、图 书资料、易燃液体和气体 等的初起火灾。不能用于 扑灭金属火灾,也不能扑 灭含有氧化基团的化学物 质引起的火灾	拔出灭火器的保险销,把喇叭筒往上扳70~90。一把托住灭火器筒底部,另一只手握住启动阀的压把。对准目标,压下压把
消防沙箭	隔绝空气, 降低 油面温度	干沙对扑灭金属起火、地面流淌火特别安全有效	将干燥沙子贮于容器中备用,灭火时,将沙子撒于着火处
交 大	隔离热源及火焰	由玻璃纤维等材料经过 特殊处理和编制而成的 织物,能起到隔离热源及 火焰的作用,盖在燃烧的 物品上使燃烧无法得到氧 气而熄灭	双手拉住灭火毯包装外的两条手带,向下拉出灭火毯。 将灭火毯 完全抖开,平直在胸前位置或将灭火毯覆盖在火源上同时切断电源或气源,直至火源冷却
消火栓	射出充实水柱, 扑灭火灾	主要供消防车从市政给水 管网或者室外消防给水管 网取水实施灭火也可以直 接连接水带、水枪出水灭 火	打开消火栓门, 取出水 带连接水枪, 甩开水带, 水带一头插入消火栓 接口, 另一头接好水枪, 摁下水泵, 打开阀门, 握紧水枪, 降水枪对准 着火部位出水灭火。

3.4 火灾处理

3.4.1 火灾处理原则及程序

- (一)火灾处理原则
- (1) 初期火灾, 应组织人员使用正确方法扑救, 遵循"先控制、后扑灭, 救人先于救火, 先重点后一般"的原则:
- (2) 火势蔓延失控时, 应迅速撤离, 并通知其他人有序撤离;
- (3) 当消防队抵达时, 提供具体情况, 确切的危险信息对于救援队至关重要。
- (二)火灾处理程序
- (1) 击碎火警警报玻璃, 启动警报, 或口头通知起火建筑里面的人疏散人群;
- (2)确保安全时使用灭火器灭火,关闭窗户、门隔离区域,关闭起火区域的电源和设备;
- (3) 不可冒险; 不能控制, 立即离开现场。

3.4.2 火灾处理注意事项

(一)沉着冷静

发生起火, 切忌惊慌, 不知所措。要沉着冷静, 根据防火课和灭火演练学到的消防知识, 组织在场人员利用灭火器具, 在火灾的初起阶段将其扑灭。如果火情发展较快, 要迅速逃离现场。

(二)争分夺秒

使用灭火器进行扑救火灾时可按灭火器的数量,组织人员同时使用,迅速把火扑灭。避免只由一个人使用灭火器的错误方法。要争分夺秒,尽快将火扑灭,防止火情蔓延。切忌惊慌失措、乱喊乱跑,延误灭火时机,小心酿成大灾。

(三)兼顾疏散

 \cdot 53 \cdot \cdot 54 \cdot

发生火灾,现场能力较强人员组成灭火组负责灭火,其余人员要在老师的 带领下或自行组织疏散逃生。疏散过程要有序,防止发生踩踏等意外事故。

(四)及时报警

发生火灾要及时扑救,同时应立即报告火警,使消防车迅速达到火场,将 火尽量扑灭。"报警早、损失小"。

(五)生命至上

在灭火过程中,要本着"救人先于救火"的原则,如果有火势围困人员,首 先要想办法把受困人员抢救出来;如果火情危险难以控制,灭火人员要确保自 身安全,迅速逃生

(六)断电断气

电气线路、设备发生火灾,首先要切断电源,然后再考虑扑救。如果发现可燃气体泄漏,不要触动电器开关,不能用打火机、或火柴等明火,也不要在室内打电话报警,避免产生着火源。要迅速关闭气源,打开窗门,降低可燃气体浓度,防止爆燃。

(七)慎开门窗

救火时不要贸然打开门窗,以免空气对流加速火势蔓延。如果室内着火。 打开门窗会加速火势蔓延;如果室外着火,烟火会通过门窗涌入,容易使人中毒、 窒息死亡。

3.4.3 火灾报警

- (1) 拨打 "119" 电话时不要慌张以防打错电话, 延误时间;
- (2) 讲清火灾情况,包括起火单位名称、地址、起火部位、什么物资着火、有无人员围困、有无有毒或爆炸危险物品等。消防队可以根据火灾的类型,调配居高车、云梯车或防化车;
- (3)要注意指挥中心的提问,并讲清自己的电话号码,以便联系;

- (4) 电话报警后, 要立即在着火点路口附近等候, 引导消防车达到火灾现场;
- (5)迅速疏通消防车道,清除障碍物,使消防车到达火场后能立即进入最佳位置灭火救援:
- (6) 如果着火区域发生了新的变化,要及时报告,使消防车队能及时改变灭火战术,取得最佳效果。

3.5 火灾扑救

3.5.1 煤气泄漏处理办法

处理程序如图 3-1 所示:

- (1)禁止任何可能产生火花的行为;
- (2) 在浓度不高的情况下, 迅速关闭燃气总开关或者阀门, 阻止气体泄漏;
- (3) 打开门窗, 流通空气, 使泄漏的燃气浓度降低, 防止发生爆炸;
- (4)如果液化石油气漏气,在可能情况下,应找专业人员或者煤气公司来处理。
- (5)迅速疏散附近人员,防止爆炸事故构成人员伤亡。

3.5.2 电器着火处理办法

- (1) 要先切断电源, 用水或者灭火器灭火;
- (2) 无法断电的情况下,禁止用水等导电液体灭火,应用沙子或二氧化碳灭火器、干粉灭火器灭火。

3.5.3 人身上着火处理办法

- (1)切勿奔跑。
- (2) 最好脱下着火的衣服, 俯伏及滚动身体灭火。
- (3) 旁人应以厚重衣物或被子覆盖着火部位, 拍打熄灭火焰, 或用灭火器灭火。

3.5.4 实验室常见火灾扑救方法

- (1) 一旦失火, 首先采取措施防止火势蔓延, 应立即熄灭附近所有火源, 切断电源, 移开易燃易爆物品, 并视火势大小, 采取不同的扑救方法;
- (2)对在容器中(如烧杯、烧瓶、热水漏斗等)发生的局部小火,可用石棉网、表面皿或者沙子等盖灭:
- (3) 有机溶剂在桌面或者地面上蔓延燃烧时,不得用水冲,可撒上细沙或用灭火毯灭火:
- (4)对钠、钾等金属着火,通常用干燥的细沙覆盖。严禁用水灭火,否则会导致 猛烈的爆炸,也不能用二氧化碳灭火器;
- (5) 若衣服着火,切勿慌张奔跑,以免风助火势。化纤织物最好立即脱除。一般小火可用湿抹布、灭火毯等包裹使火熄灭。若火势较大,可就近用水龙头浇灭。必要时可就地卧倒打滚,一方面防止火焰烧向头部,另外在地上压住着火处,使其熄灭:
- (6) 在反应过程中, 若因冲料、渗漏、油浴着火等引起反应体系着火时, 情况比较危险, 处理不当会加重火势。扑救时必须谨防冷水溅在着火处的玻璃仪

器上,必须谨防灭火器材击破玻璃仪器,造成严重的泄露而扩大火势。有效的扑灭方法是用几层灭火毯包住着火部位,隔绝空气使其熄灭,必要时在灭火毯上撒些细沙。若仍不奏效,必须使用灭火器,由火场的周围逐渐向中心处扑灭。

3.6 火灾逃生与自救

除了火灾产生的高温、有毒烟气威胁着火场人员生命安全,火灾的突发性、火情的瞬息变化也会严重考验火场人员的心理承受能力,影响他们的行为。被烟火围困人员往往会在缺乏心理准备的状态下,被迫瞬间作出相应的反应,一念之间决定生死。火场上的不良心理状态会影响人的判断和决定,可能导致错误的行为,造成严重后果只有具备良好的心理素质,准确判断火场情况,采取有效的逃生方法,才能绝处逢生。

- (1) 平时注意熟悉实验室的逃生路径、消防设施及自救的方法, 积极参与应急 逃生演练:
- (2)火灾发生时,应保持冷静、明辨方向、迅速撤离,千万不要相互拥挤、连冲 乱撞。应尽量往楼层下面跑。若通道已被烟火封阻,则应背向烟火方向离开, 通过阳台、气窗、天台等往室外逃生;
- (3)为了防止火场浓烟呛入,可采用湿毛巾、口罩蒙鼻,匍匐撤离。浓烟中还可以戴充满空气的塑料袋逃生;
- (4) 严禁通过电梯逃生。若楼梯已被烧断、通道被堵死时,可通过屋顶天台、阳台、落水管等逃生,或在固定的物体上栓绳子,然后手拉绳子缓缓而下;
- (5)如果无法撤离,应退居室内,关闭通往火区的门窗,还可向门窗上浇水,还 用湿布条塞住门缝,并向窗外伸出衣物、抛出物件、发出求救信号或者呼喊、 打手电筒的方式发送求救信号,等待救援;
- (6) 如果身上着火,千万不可奔跑或者拍打,应迅速撕脱衣物,或通过泼水、就

· 57 ·

地打滚覆盖厚重衣物等方式压灭火苗;

(7)生命第一,不要贪恋财物,切勿轻易重返火场。

第四章 仪器设备使用安全

高校实验室常用的仪器设备有玻璃仪器、高压设备、高温、低温设备、高能设备、机械加工设备以及一些分析测试仪器等(见表 4-1)。这些装置都有一定的危险性,如果操作失误,可能会引起较大的安全事故,所以在使用这些仪器设备时必须做好充分的预防措施并且谨慎地按照操作规程操作。在这一章节中主要是介绍实验室常备设备及特种设备的使用安全。

表 4-1 实验室常用仪器设备及引发的事故种类

装置类型	事故种类	装置示例
玻璃器具	割伤、烫伤	烧瓶、玻璃棒
高压装置	由气体、液体的压力所造成的伤害,继而发 生火灾、爆炸等事故	高压钢瓶、高压反应釜
高温装置	烧伤、烫伤	高温炉、烘箱
低温装置	冻伤	冷冻机
高能装置	触电、辐射	激光器、微波设备
高速装置	绞伤	离心机
机械装置	绞伤	机床、车床
大型仪器设备	损坏、火灾、爆炸	气相色谱仪、核磁共振仪

使用实验室仪器设备的一般注意事项如下:

- (1)建立设备台帐,详细做好使用记录:
- (2) 电路容量必须与设备匹配, 注意接地要求;
- (3) 做好危险性设备的安全警示标识, 操作时不离人:
- (4)需按照仪器设备操作规程和使用说明使用;

- (5)使用的能量越高,其装置的危险性就越大。使用高温高压及高速装置时, 必须做好充分的防护措施,谨慎进行操作;
- (6) 危险性就越大。使用高温高压及高速装置时,必须做好充分的防护措施, 谨慎进行操作:
- (7)对于不了解其性能的装置,使用前要认真地进行准备,尽可能逐个核对装置的各个部分的功能和操作要领,在掌握其基本操作后,才能进行操作:
- (8)装置使用后要收拾妥当。如果有发现不妥当的地方,必须马上进行检查和 修理,或者把情况报告给管理者;
- (9)及时做好废旧、破损仪器的报废工作(对含放射源的设备报废时,需告知、 特殊处置)。

4.1 冰箱的管理

储存化学试剂应使用防爆冰箱, 见图 4-1 (至少用电子温控有霜型冰箱, 须拆除照明灯)

- (1) 实验室原则上不得超期使用冰箱 (一般规定 10 年);
- (2) 机械温控有霜冰箱未经防爆改造不得储存化学试剂);
- (3) 机械温控无霜冰箱不能改造, 也不准储存化学试剂;
- (4) 易挥发有机溶剂;
- (5) 实验室冰箱内不得存放食物;
- (6)储存的物品应标识明确(品名、姓名、时间等):
- (7) 经常性进行清理 (特别是学生毕业离校时);
- (8) 不得在冰箱附近、上面堆放影响散热的杂物。

图 4-1 防爆冰箱

4.2 加热设备的管理

加热设备包括: 明火电炉、电阻炉、恒温箱、干燥箱、水浴锅、电热枪、电吹风等。

- (1) 使用加热设备必须采取必要的防护措施, 严格按照操作规程进行操作。使用力人员不得离岗; 使用完毕, 必须关掉电源;
- (2)加热产热仪器设备需放置在阻燃的稳固的实验台或者地面上进行操作, 不得在在其周围堆放易燃易爆物或者杂物:
- (3)禁止用电热设备烘烤溶剂、油品、塑料筐等易燃、可挥发物。若加热时会产生有毒有害气体,应在通风处内进行;
- (4) 应在断电的情况下, 采取安全的方式取放被加热物品;
- (5)使用管式电阻炉时,应确保导线与加热棒接触良好;含有水分的气体需要经过干燥后,方能进入炉内;
- (6)使用恒温水浴锅时,应避免干烧,注意不要将水溅到电器盒里;
- (7) 使用电热枪时, 不可对着人身体的仟何部位:
- (8)使用电吹风和电热枪后,需进行自然冷却,不得阻塞或者覆盖出风口或者入风口:
- (9) 明火电炉的管理: 1) 明火电炉需经设各室处审批(不可替代性有效的安全防护措施); 2) 不得用明火电炉加热易燃易爆品; 3) 不得加热塑料容器; 4) 明火电炉周围不得放置易燃易爆化学试剂或纸板箱等物品。

4.3 高速离心机的管理

目前实验室常用的是电动离心机(图 4-2)。电动离心机转动速度快,要注意安全,特别要防止在离心机转动期间因不平衡或吸垫老化,而使离心机工作边移动,以 致从实验台上掉下来,或因盖子未盖,离心管因振动而破裂后,玻璃随便旋转飞出, 造成事故。因此使用离心机时,必须注意以下操作。

- (1) 离心机套管底部要垫棉花;
- (2) 电动离心机如有噪声或机身振动时, 应立即切断电源, 及时排除障碍;
- (3) 离心管必须对称放入套管中,防止机身振动,若只有一支样品管,另外一支要用等质量的水替代;
- (4) 启动离心机时, 应盖上离心机顶盖后, 方可慢慢启动;
- (5)分离结束后,先关闭离心机,在离心机停止转动后,方可打开离心机盖,再 取出样品,不可用外力强制其停止运动;
- (6) 离心时间一般 1~2min, 在此期间, 实验者不准离开。

图 4-2 高速离心机

4.4 机械加工设备的管理

机械加工设备在运行过程中,易造成切割、被夹、被卷等意外事故。

- (1)对于冲剪机械、刨床、圆盘锯、堆高机、研磨机、高压机等机械设备,应有护罩、 套筒等安全防护设备:
- (2)对车床、滚齿机械等高度超过作业人员身高的机械,应设置适当高度的工作台:
- (3)佩戴必要的防护器具(工作服和工作手套),束缚好宽松的衣服和头发,不得佩戴长项链,穿拖鞋,严格按照操作规程进行操作。

4.5 通风橱的管理

- (1) 通风橱内及下方的柜子不能存放化学品。
- (2)使用前检查通风橱内的抽风系统和其他功能是否正常运转。
- (3) 应在距离通风橱至少 15cm 处进行操作;操作时应尽量减少在通风橱以及调节门前进行大幅度动作,减少实验室人员流动。
- (4) 切勿储存会伸出橱外或玻璃视窗开合或者妨碍导流板下方开口处的物品或设备。
- (5) 切勿用物件阻挡通风橱口和橱内后方的排气槽,确需要在橱内储放必要物品时,应将其垫高至于左右侧边上,同通风柜台面隔空,以使气流能从其下方通过,且远离污染产生源。
- (6) 切勿把纸张或者较轻的物件塞干排气出口处。
- (7)进行实验时,人员切勿将头部及上半身伸进通风柜内;操作人员应将玻璃 视窗调节至手肘处,使胸部以上受到玻璃视窗屏护。

· 63 ·

- (8)人员不操作时,应确保玻璃视窗处于关闭状态。
- (9) 若发现故障切勿进行试验, 应立即关闭柜门并联系维修人员检修。定期检查通风橱的抽风能力, 保持其通风效果。
- (10)每次使用完毕,必须彻底清理工作台及仪器,对于被污染的通风橱应接上接上明显的警示牌,并告知其他人员,以免造成不必要的伤害。

4.6 特种设备的管理

特种设备广泛地应用于学校教学科研的各个领域中,涉及生命安全、危险性较大的锅炉、压力容器(含气瓶)、压力管道、电梯、起重机械、场内机动车辆等,都是学校和实验室内常用设备。随着特种设备数量的增加和应用范围的扩大,随之而来的安全问题也越来越突出。

4.6.1 压力设备

压力设备的用途非常广泛,它在石油化学工业、能源工业、科研和军工等国名经济的各个部门都起重要的作用。实验室用到的压力容器主要有高压灭菌锅、高压反应条、反应罐、反应器和各种压力储罐(图 4-3)等。

高压灭菌锅

高压反应釜

压力储罐

图 4-3 实验室常见高压装置

(一)压力设备的界定条件

- (1) 盛装液体或者液体,承载一定压力的密闭设备,其范围规定为最高工作压力大于或者等于 0.1MPa (表压)的气体、液化气体和最高工作温度高于或者等于标准沸点的液体、容积大于或者等于 30L 且内径(非圆形截面指截面内边界最大几何尺寸)大于或者等于 150mm 的固定式容器和移动式容器;
- (2) 盛装公称工作压力大于或者等于 0.2MPa(表压),且压力与容积的乘积 大于或者等于 1.0MPa·L 的气体、液化气体和标准沸点等于或者低于 60℃液体的气瓶;
- (3)氧舱。
- (二)压力装置使用与校验
- 1. 压力容器的使用要求

正确合理地使用压力容器,才能保证其安全运行。即使是容器的设计完全符合要求,制造、安装质量优良,如果操作不当,同样会造成事故。对压力容器使用要注意以下事项:

- (1)压力容器的操作人员在取得质量技术监督部门统一颁发的"压力容器操作人员证"后,方可上岗工作。操作人员一定要熟悉本岗位的工艺流程、容器的结构、类别、主要技术参数和技术技能,严格按照操作规程操作。掌握处理一般事故的方法,认真填写有关记录;
- (2)压力容器严禁超温、超压运行。压力容器的使用压力不能超过压力容器的最高工作压力,以保证压力容器的正常运行。实行压力容器安全操作挂牌制度或采用机械连锁机制防止误操作。检查减压阀失灵与否。装料时避免过急过量,液化气体严禁超量装载,并防止意外受热等;
- (3)压力容器要平稳操作。压力容器开始加载时,速度不宜过快,要防止压力 突然上升。高温容器或工作温度低于0℃的容器,加热或者冷却都应缓慢

· 65 ·

进行。尽量避免操作中压力的频繁和大幅度波动;

- (4) 严禁带压拆卸压紧螺栓。压力容器内部有压力时,不得进行任何修理。对 压力容器的受压部件进行重大修理和改造,应符合《压力容器安全技术监 察规程》和有关标准的要求,并将修理和改造方案报质量技术监督部门审 查通过后,方可施工;
- (5) 经常检查安全附件运行情况。检查安全阀、压力表是否有效,有无按规定送检验。安全阀每年至少校验一次,压力表每半年校验一次。新安全阀在安装之前,应根据压力容器的使用情况,送校验后,才准安全使用。必须保证安全报警装置录敏可靠。

2. 压力容器的检验

亦称压力容器运行中的检查检查的主要内容有压力容器外表面有无裂纹变形、 泄漏、局部过热等不正常现象;安全附件是否齐全、灵敏、可靠,紧固螺栓是否完好、 全部旋紧以及防腐层有无损坏等异常现象。

压力容器除日常定点检查外,还应进行定检验,以便及时发现缺陷并采取相应措施防止重大事故发生。定期检验分为外部检查和内外部检验及耐压试验。压力容器的定期检验由专业人员完成。

4.6.2 起重机械

(一)起重机械的界定条件

起重机械,是指用于垂直升降或者垂直升降并水平移动重物的机电设备,其范围规定为:

- (1) 额定起重量大于或者等于 0.5t 的升降机;
- (2) 额定起重量大于或者等于 3t (或额定起重力矩大于或者等于 40t·m 的塔式起重机,或生产率大于或者等于 300t/h 的装卸桥),且提升高度大于或者等于 2m 的起重机:

- (3) 层数大于或者等于 2 层的机械式停车设备。
- (二)起重机械安全隐患及注意事项

起重机械存在的隐患: 起重设备超期服役、长期失修; 起重设备的支架受力角度不对; 连接件未固定牢, 或者强度不够; 超过起重重量。因此, 使用过程中应该注意以下事项.

- (1) 起重机械设备须定期检查, 确保其安全有效;
- (2)起重机械从业人员须经过与管单位的培训,持证上岗,严格按照操作规程进行操作:
- (3) 在使用各种起重机械前, 须认真检查:
- (4) 起重机械不得掉漆超过额定重量的物体;
- (5) 无论在任何情况下, 起重机械操控范围内严禁站人。

4.6.3 气体钢瓶

气瓶属于移动式压力容器, 但在充装和使用方面有其特殊性, 所以在安全方面还有一些特殊的规定和要求。

(一)气体钢瓶分类

气瓶按充装气体的物理性质可分为压缩气体气瓶、液化气体气瓶(高压液化气体、低压液化气体);按充装气体的化学性质分为惰性气体气瓶、助燃气体气瓶、易燃气体气瓶和有毒气体气瓶。这些气瓶常见的充装气体见表 4-2。

表 4-2 气瓶分类及常见充装气体

分类	存放气体	
压缩气体钢瓶	空气、氧气、氢气、氮气、氩气、氦气、氖气、氪气、甲烷、煤气、三氟化硼、 四氟甲烷	
高压液化气体钢瓶	二氧化碳、乙烷、乙烯、氧化亚氮、氯化氢、三氟氯甲烷、六氟化硫、氟乙烯、偏二氟乙烯、六氟乙烷	

低压液化气体钢瓶	溴化氢、硫化氢、氨、丙烷、丙烯、甲醚、四氧化二氮、正丁烷、异丁烷、光气、
瓜压烟化气冲极瓶	溴甲烷、甲胺、乙胺

易燃性气体钢瓶	氢气、甲烷、液化石油气等
助燃性气体钢瓶	氧气、压缩空气等
毒害性气体钢瓶	氰化氢、二氧化硫、氯气
窒息性气体钢瓶	二氧化碳、氮气

(二)气瓶的标记

(1) 气瓶的钢印标记

气瓶的钢印标记包括制造钢印标记和检验钢印标记,是识别气瓶的依据。

1)制造钢印标记(图 4-4)是气瓶的制造钢印标记,是由制造厂用钢印由机械或人工打印在气瓶肩部、简体、瓶阀护罩上的,有关设计、制造、充装、使用、检验等技术参数的印章。

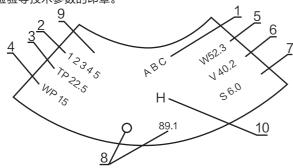


图 4-4 气瓶的制造钢印标记

1- 气瓶制造单位代号; 2- 气瓶编号; 3- 水压试验压力, MPa; 4- 公称工作压力, MPa; 5- 实际重量, kg; 6- 实际容量, L; 7- 瓶体设计壁厚, mm; 8-制造单位检验标记和制造年月; 9- 监督检验标志; 10- 寒冷地区用气瓶标记

2) 检验钢印标记(图 4-5) 是气瓶定期检验后, 由检验单位用钢印由机械或人

工打印在气瓶肩部、筒体、瓶阀护罩上或打印在套于瓶阀尾部金属标记环上的印章。

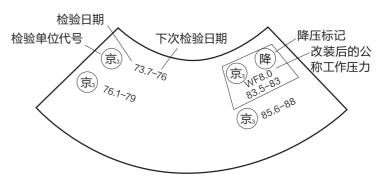


图 4-5 气瓶的检验钢印标记

(三) 气瓶的颜色标记

气瓶的颜色标记是指气瓶外表的颜色、字样、字色和色环(图 4-6)。气瓶喷涂颜色的主要目的是方便辨识气瓶内的介质,即从气瓶外表的颜色上迅速辨识盛装某种气体的气瓶和瓶内气体的性质可燃性毒性)避免错装和错用。此外,气瓶外表喷涂带颜色的油漆,还可以防止气瓶外表锈蚀。国内常用气瓶的颜色标记见表 4-3。

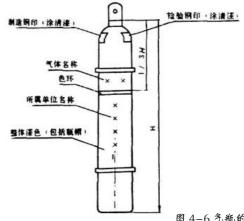


图 4-6 气瓶的颜色标记喷涂位置

表 4-3 国内常用气瓶颜色标记

序号	盛装介质	外观颜色	字样	字色	色环
1	氢	淡绿	氢	大红	p=20 淡黄色环一道 p=30 淡黄色环二道
2	氧	淡(酞)蓝	氧	黑	,
3	氮	黑	氮	淡黄	p=20 白色环一道 p=30 白色环二道
4	空气	黑	空气	白	p oo deale
5	二氧化碳	铝白	液化二氧化碳	黑	p=20 黑色环一道
6	氨	淡黄	液氨	黑	
7	氯	深绿	液氯	白	
8	甲烷	棕	甲烷	白	p=20 淡黄色环一道 p=30 淡黄色环二道
9	丙烷	棕	液化丙烷	白	
10	乙烯	棕	液化乙烯	淡黄	p=15 白色环一道 p=20 白色环二道
11	硫化氢	白	液化 硫化氢	大红	
12	溶解乙炔	白	乙炔不可近火	大红	
13	氩	银灰	氩	深绿	
14	氦	银灰	氦	深绿	p=20 白色环一道
15	氖	银灰	氖	深绿	p=30 白色环二道
16	氪	银灰	氪	深绿	

(三)气体钢瓶的使用要求

- (1)需要使用气体的单位应当购买已取得《气瓶充装许可证》的供应商充装的瓶装气体,并向其索取证书复印件备查。确保采购的气体钢瓶质量可靠,同时检查瓶体上的各种标识是否准确、清晰、完好,气瓶是否在有效的检验周期内,不得擅自更改气体钢瓶的钢印和颜色标记(见表 4-4);
- (2) 气体钢瓶须根据国家《TSGR0006-2014 气瓶安全技术监察规程》要求 定期进行技术检验: 盛装腐蚀性气体的气瓶每两年检验一次、盛装一般气

体的每三年检验一次、盛装惰性气体的气瓶每五年检验一次、溶解乙炔气瓶每三年检验一次、液化石油气钢瓶和液化二甲醚钢瓶每四年检验一次。使用过程中若发现严重腐蚀、鼓包、裂纹等情况,应提前检验。超过检验有效期或无有效检验钢印标识的气瓶不得使用。

- (3) 气体钢瓶存放地点应严禁明火、保持通风、干燥,避免阳光直射,配备应急救援设施、气体检测和报警装置:
- (4) 气体钢瓶必须远离热源、放射源、易燃易爆和腐蚀物品,实行分类隔离存放,不得混放,不得存放在走廊和公共场所。空瓶内必须保留一定剩余压力,与实瓶应分开放置,并有明显标识;
- (5) 气体钢瓶须直立放置, 妥善固定, 并做好气体钢瓶和气体管路标识, 有多种气体或多条管路时需指定详细的供气管路图;
- (6) 供气管路需选用合适的管材。易燃、易爆、有毒的危险气体(乙炔除外)连接管路必须是合适的惰性管线; 乙炔的连接管路不得使用铜管;
- (7)使用前后应检查气体管道、接头、开关及器具是否有泄漏,确认盛装气体 类型并做好应对可能造成的突发事件的应急准备;
- (8)使用后,必须关闭气体钢瓶上的主气阀和释放调节器内的多余气压;
- (9) 移动气体钢瓶应使用手推车, 切勿拖拉、滚动和滑动气体钢瓶, 气体钢瓶 规范使用见图 4-7;
- (10) 严禁敲击、碰撞气体钢瓶; 严禁使用温度超过 40℃的热源对气瓶加热。 实验室内应保持良好的通风; 若发现气体泄漏, 应立即采取关闭气源、开 窗通风、疏散人员等应急措施。切忌在易燃易爆气体泄漏时开关电源。对 于气体钢瓶有缺陷、安全附件不全或已损坏、不能保证安全使用的, 需退 回供气商或请有资质的单位进行及时处置;
- (11)氧气瓶以及与氧气接触的附件(如减压阀、输气胶管等)不得接触油脂, 氧气存放处张贴严禁油脂的标识;

图 4-7 气体钢瓶规范使用范例

- (12)各相关单位应当定期做好气瓶压力表的检定工作,根据《化学工业计量器具分级管理办法》(试行)规定,每半年检定一次;或按照检定证书规定的检定周期及时送检。检定单据存档备查:
- (13) 各相关单位必须制订相应的安全管理制度和事故应急处理措施;要有专人负责统计与跟踪本单位气瓶的数量和使用状态,建立气瓶使用台账;加强对气瓶使用人员进行安全技术教育。发生意外事故时,要采取相应的应急处理措施,并立即向相关部门报告。

表 4-4 常见气瓶颜色

气瓶颜色	气体种类	
黑色	空气、氮气	
银灰色	氩、氦、二氧化硫、一氧化二氮、一氧化碳、六氟化氢	
白色	乙炔、一氧化氮、二氧化氮	
铝白	二氧化碳、四氟甲烷	
淡黄	氨气	
棕色	乙烯、丙烯、甲烷、丙烷、环丙烷	
淡蓝色	氧气	
淡绿色	氢气	
深绿色	氯气	

第五章 辐射安全

按照放射性粒子能否引起传播介质的电离,把辐射分为两类: 电离辐射和非电离辐射 (图 5-1)。电离辐射是指能引起物质电离的辐射的总和,特点是波长短短、频率高、能量高,电离作用可以引起癌症。种类为: 高速带电粒子有 α 粒子、 β 粒子、质子,不带电离子有中子、X 射线、 γ 射线。非电离辐射较电离辐射能量更弱,非电离辐射不会电离物质,而会改变分子或者原子之旋转、振动或价层电子轨态。通常所说的辐射主要指电离辐射。

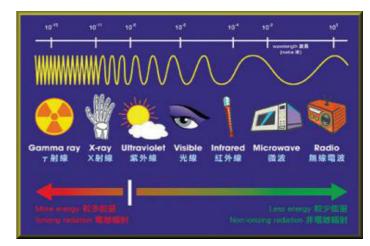


图 5-1 电磁波谱与辐射类型的关系

5.1 实验室常见放射源和放射装置

5.1.1 放射源

放射源按照密封状况可分为密封源和非密封源。密封源是密封在包壳或者紧密覆盖层里的放射物质。工农业生产中应用的料位计、探伤机等使用的都是密封源,如钴-60、镭-226、铯-137、铱-192、气象色谱仪 ECD 检测器(镍-63)等。

非密封源是指没有包壳的放射性物质。医院里使用的放射性示踪剂属于密封源,如 碘 -131,磷 -32,碳 -14,氢 -3 等。

5.1.2 放射性装置

放射性装置是指 X 射线机、加速器、中子发生器在运行时产生射线的装置以及含放射源的装置,如 X- 衍射仪、X- 单晶衍射仪、X 荧光光谱。

根据射线装置对人体健康和环境可能造成危害的程度,从高到低将射线装置分为 1 类、II 类、III 类。I 类为高危险放射装置,事故时可以使短时间照射人员产生严重放射损伤,甚至死亡,或对环境造成严重影响;II 类为中危险放射装置,事故时可以使受照射人员产生较严重放射损伤,大剂量照射甚至导致死亡;III 类为低危险射线装置,事故时一般不会造成受照人员的放射损伤。

5.2 电离辐射的危害

认识电离辐射的危害首先应该清楚地认识到放射性物质作用人体的方式和放射性物质进入人体的方式。才能在源头减轻或者遏制辐射对人体健康的危害。

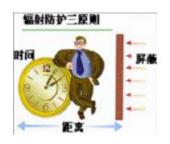
根据放射性物质作用于人体的方式可以分为: (1) 外照射: 辐射源位于人体外对人体造成的辐射照射,包括均匀全身照射、局部受照; (2) 内照射: 存在于人体内的放射性核素对人体造成的辐射照射; (3) 放射性核素的体表沾染: 放射性核素沾染于人体表面(皮肤或者粘膜)。沾染的放射性核素对沾染局部构成外照射源,同时尚可经过吸收进入血液构成体内照射。

放射性物质进入人体途径很多,包括: 呼吸道吸入、消化道进入、皮肤或者粘膜(包括伤口) 侵入。因此,辐射工作人员应严格遵守操作规程,熟知防护原则措施,保障工作人员和公众的健康和安全。

随着放射性核素的广泛应用,越来越多的人认识到辐射对机体造成的损害随着辐射照射量的增加而增大,大剂量的辐射照射会造成被照部位的组织损伤,并导致

癌变,即使是小剂量的辐射照射,尤其是长时间的小剂量照射蓄积也会导致照射组织器官诱发癌变,并会使受照射的生殖细胞发生遗传缺陷。(表 5-1)

表 5-1 成年人全身蓄积辐射症状


受照剂量 /mSv	放射病程度	症状
100以下	无影响	
100-500	轻微影响	白细胞减少, 多无症状表现
500-2000	轻度	疲劳、呕吐、食欲减退、暂时性脱发、红细胞减少
2000-4000	中度	骨骼和骨密度遭到破坏, 红细胞和白细胞极度减少, 由内出血、呕吐、腹泻的症状
4000-6000	重度	造血、免疫、生殖系统以及消化道等脏器受到影响, 甚至 危及生命

5.3 电离辐射防护

电离辐射防护在于防止不必要的射线照射,保护操作者本人免受辐射损伤,保护周围人群的健康和安全。对于内照射的防护是减少放射性核素进入人体和加快排出。对外照射的防护主要采取一下三种方法。

5.3.1 辐射防护原则

- (1) 时间防护: 对于相同条件下的照射, 人体接受的剂量与照射时间成正比。因此, 减少照射时间可以明显减少吸收剂量。
- (2) 距离防护: 若不考虑介质的散射与吸收, 辐射剂量与辐射距离成反比, 增大与放射源的距离, 可以减少受到照射的剂量
- (3)物质屏蔽: 射线与物质发生作用,可被吸收和散射。对于不同的射线,其屏蔽方法不同。α射线只用一张只就可以屏蔽,γ和X射线,用原子序数高的物质(比如铅)效果比较好,β射线则先用原子序数低的材料(比如有机玻璃)阻挡β射线,再在其后用原子序数较高的物质阻挡激发的X射线(图5-2)。

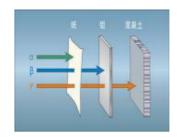


图 5-2 射线的屏蔽

除了以上三项措施以外,在满足需要的情况下,尽量选择活度小、能量低、容易防护的辐射源也是非常重要的。

5.3.2 放射性实验室的安全管理

(一)放射性物质的购买

放射性物质(包括射线装置)的采购由学校设备与实验室管理处审批后向环保部门审批。放射性物质管理人不得私自将其转借他人。确需移交的,必须经所在实验室、单位和学校设备与实验室管理处同意,办理必要手续后方可实施移交。放射装置到货验收后,必须进行质量检测和放射防护性能检测,获得许可后方可使用。

(二)放射性标志的使用

放射性工作场所,要在场所外面的明显位置张贴电离辐射标志(图 5-3); 实验室内存放放射性物品、辐射发生装置等,都应有明显的放射性标志。

- (三)放射源及带源仪器的安全使用
- (1)任何类型的放射源都不能直接用手直接拿取或触摸,所有放射源使用时都要使用工具(如长柄或短柄镊子、钳子等)进行操作:
- (2)保证放射源进出仪器的操作正确,谨防误操作造成的事故。放射源使用后应退出机器,装入铅罐(图 5-4),放回保险柜锁好;

- (3) 放射源的管理严格执行"双人双锁"的制度。
- (4) 若遇到放射源跌落, 封装破裂等事故, 应及时关闭门窗和通风系统, 立即向单位领导和上级有关部门报告, 启动应急响应, 并通知邻近工作人员撤离, 严格监管现场, 严禁无关人员进入, 控制事故影响的区域。

图 5-3 放射性标志

图 5-4 放射源储罐

- (四)放射性废弃物的规范处置
- (1) 有经环保部门审核认定的处置方案或协议, 有暂存容器和场所、处置记录;
- (2)放射性废源必须集中收缴、储存,并经公安、环保等有关部门同意后,采取严密措施,统一处置;
- (3)同位素示踪试剂及废液处理:不可与普通废液混放,更不可直排,集中储存,请专业公司统一处理,或者按照有关要求进行处置,并报实验室与设备管理外备案。
- (4) 半衰期短的可以储存 10 个半衰期, 经检测达标后处置。
- (5)带有放射性物质的设备报废,也必须请专业公司。

5.3.3 放射性实验室的人员管理

(1) 涉辐人员必须经过环保部门组织的培训,取得《辐射安全与防护培训学习合格证书》,必须持证上岗,四年复训1次。

- (2)学生在进行涉辐实验前,应接受指导老师提供的防护知识培训和安全教育, 指导老师对学生富有监督和检查的责任。
- (3) 涉辐人员在从事涉辐实验时,必须采取必要的防护措施,规范操作,避免空气污染、表面污染以及外照射事故的发生,并正确佩戴的人剂量剂,接受个人计量检测,个人剂量计的检测周期为 1 次 / 季度。
- (4) 涉辐人员必须接受学校安排的职业健康检查, 每年两次。
- (5)工作人员禁止在放射性实验室内饮水、进食、吸烟,也不能存放此类物品。如需要,可设立单独的、完全与实验室隔离的房间作为休息、进食使用。
- (6)工作人员在有比较严重的疾病或者外伤时,不要进入放射性实验室。
- (7)参观访问人员进入放射性实验室,要确保有了解该实验室安全与防护措施的工作人员陪同;在参观访问人员进入实验室前,向他们提供足够的信息和知指导,采取适当的防护措施,确保来访者实施适当的监控。

5.3.4 个人防护用具的配备与应用

(1)放射性实验室应根据实际需要为工作人员适当、足够和符合有关标准的个人防护用具。如各类的防护服、防护围裙、防护手套、防护面罩及呼吸防护器具等(图 5-5),并应使工作人员了解其使用的防护用品的性能和使用方法。

图 5-5 个人辐射防护用品

- (2)应对工作人员进行正确使用呼吸防护器具的指导,并检查佩戴是否合适。
- (3)对于任何给定的工作任务,如需使用防护器具,则应考虑由于防护用具使用带来的工作不便或工作时间延长导致的照射增加,并应考虑使用防护用具可能伴有的非辐射危害。
- (4)个人防护用具应有恰当的备份,以备在干预事件中使用。所有个人防护用具均应妥善保管,应对其性能进行定期检查。
- (5)放射性实验室应通过利用恰当的防护手段与安全措施(包括良好的工程控制装置和满意的工作条件),尽量减少正常运行期间对个人防护用具的依赖。

 \cdot 79 \cdot \cdot 80 \cdot

第六章 生物安全

SARS 和高致病性禽流感的爆发于流行,使各国政府和国际社会对生物安全问题有了更多的认识和关注。尤其是新加坡和中国台湾、北京等地相继发生实验室感染事件后,实验室生物安全已经由原来的安全隐患变成可怕的现实危害。实验室生物安全涉及的不仅仅是某个实验室的安全及工作人员的个人健康,一旦发生事故,极有可能给人类社会、动物、植物乃至整个自然界带来不可预计的危害和影响。因此,实验室生物安全问题亟待解决且事关重大,实验室人员必须学习生物安全基本知识和理论,做好个人防护,熟悉实验室标准操作程序和突发事件应急处置方案方可进入实验室。

6.1 实验室生物安全的基础知识

6.1.1 生物安全的定义

生物安全是指对自然生物和人工生物及其产品对人类健康和生态环境可能产生的潜在风险的防范和现实危害的控制。目前是保证试验研究的科学性还要保护被实验因子免受污染。涉及的内容主要有重大传染病、实验室生物安全、流行病及公共健康管理、转基因生物和有害外来物种入侵、生物技术安全、食品安全、危险病原体及生化毒素的管理等领域。

6.1.2 生物安全实验室的分类

表 6-1 生物安全实验室的分级

实验室分级	处理对象
一级	对人体、动植物或环境危害较低,不具对健康成人、动植物致病的致病因子

实验室分级	处理对象	
二级	对人体、动植物或环境具有中等危害或具有潜在危险的致病因子,对健康成人、动物和环境不会造成严重危害, 具有有效预防和治疗措施	
三级	对人体、动植物或环境具有高度危险性,主要通过气凝胶使人感染上严重的甚至是致命的疾病,或对动植物和环境具有高度危害的致病因子。通常有预防治疗措施	
四级	对人体、动植物或环境具有高度危险性,通过气凝胶途径传播或者传播途径不明,或未知的、危险的致病因子,没有预防治疗措施	

生物安全实验室,也称生物安全防护实验室,是通过防护屏障和管理措施,能够避免或控制被操作的有害生物因子危害,达到生物安全要求的生物实验室和动物实验室。

依据实验室所处理对象的危害程度,把生物安全实验室分为四级,其中一级对生物安全隔离的要求最低,四级最高。生物安全实验室的分级见表 6−1。

6.2 生物安全实验室的监管

6.2.1 一般性要求

- (1)应在实验室门口张贴生物危害标志(图 6-1)标明所使用的传染性病原体、 实验室负责人的姓名和联系电话,并标明进入实验室的具体要求;
- (2)生物实验室的相关实验人员需经过相关机构培训,取得证书,持证上岗;
- (3)根据生物实验室的不同级别要求配备恰当的个人防护装备,人员进入实验室前做好人个人防护工作,正确使用防护装备;
- (4) 在实验室所在的建筑内配备高压蒸汽灭菌器或其他恰当的消毒设备;
- (5) 开展高致病性微生物的研究必须在三级或者四级生物实验室进行, 同时开

 \cdot 81 \cdot \cdot 82 \cdot

展的项目须报省级卫生、农业部门审核批准,其他病原微生物也必须在一级或者二级生物实验室进行;

- (6) 实验涉及生物危害因子的须在生物安全柜中进行或其他防护设施中进行:
- (7)安全保存菌、毒种等生物活性实验材料,同时严格监控,设立台账,记录使用情况,实行双锁制度;

图 6-1 实验危害警告标志

6.2.2 动物实验管理

(一)实验动物许可管理:

实验动物的生产和使用实行许可证制度(审批单位,广东省科技厅)。

- (二)实验动物使用要求:
- (1) 动物实验必须在具有实验动物使用许可证的场所进行
- (2)实验动物必须有动物供应部门提供的实验动物质量合格证明,严禁从无实验动物质量合格证明的单位或从农贸市场购买动物作为实验动物
- (3)使用实验动物进行动物实验时,应善待动物,动物实验方案设计应该遵循: "3R原则";手术室进行必要的无痛麻醉,做完实验后动物要进行安乐死
- (4)实验动物的尸体、组织及感染性排泄物(包括垫料)须放置在指定的存放

室,交由有资质的公司回收进行无害化处理,严禁混入生活垃圾处理。

6.2.3 生物废弃物的处置

生物安全实验室废弃物是指将要丢弃的所有物品,如动物组织、器官、尸体,一般生化固废(移液管枪头、刀片、废纸),一次性手套等,这些废弃物需要进行分类处理,不可与生活垃圾混放。生物安全实验室废弃物的处置原则是所有感染性材料必须在实验室内清除污染、高压灭菌、焚烧或者交由医疗废物处置单位处置。不同类型的废弃物的处置流程如下:

- (1)生物活性实验材料:实验废弃的生物活性实验材料,特别是细胞和微生物(细菌、真菌、病毒等)必须及时灭菌和消毒处理;
- (2)固体培养基等要采用高压灭菌处理,未经有效处理的固体废弃物不能作为日常垃圾处理:
- (3)液体废弃物如细菌等需用 15% 次氯酸钠消毒 30min,稀释后排放,最大限度地减轻对周围环境的影响;
- (4) 动物尸体或被解剖的动物器官需及时进行妥善处理,禁止随意丢弃,须按要求消毒,并用专用塑料袋密封后冷冻储存,统一送有关部门集中焚烧处理。 严禁随意堆放动物排泄物,与动物有关的垃圾必须存放在指定的塑料垃圾袋内,并及时用过氧乙酸消毒处理后方可运出:
- (5)实验器材与耗材:吸头、吸管、离心管、注射器、手套及包装等塑料制品应使用特制的耐高压超薄塑料容器收集,定期灭菌后回收处理;
- (6) 废弃玻璃制品和金属物品应使用专用容器分类收集, 统一回收处理;
- (7)注射针头用过后不应再重复使用,应放在盛放锐器的一次性容器内焚烧,如需要可先高压灭菌,盛放锐器的容器不能装得过满(不超过四分之三);
- (8) 高压灭菌后重复使用的污染 (有潜在污染性) 材料必须在高压灭菌或消毒后进行清洗、重复使用;

(9) 应在每个工作台上放置盛放废弃物的容器、盘子或广口瓶,最好是不易破碎的容器(如塑料制品)。当使用消毒剂时,应使废弃物充分接触消毒剂(即不能有气泡阻隔),并根据使用的消毒剂的不同保持适当接触时间。盛放废弃物的容器在重新使用前应高压灭菌并清洗。

6.3 生物安全实验室的个人防护

6.3.1 个人防护装备的总体要求

使用个人防护装备是为了减少操作人员暴露于气凝胶、喷溅物以及意外接种等 危险环境设立的一个物理屏障,防止工作人员受到工作场所中物理、化学和生物等 有害因子的伤害。实验室工作人员应结合工作的具体性质,按照不同级别的防护要 求选择恰当的防护装备。

(1) 选择合格产品

实验人员选择的任何个人防护装备应符合国家有关标准。同时,实验人员应接受关于个人防护装置的选择、使用、维修等方面的指导和培训,对个人防护装备的选择和维护应有明确的书面规定、程序和使用指导,形成标准化体系。

(2)使用前验证

个人防护装备使用前应仔细检查,不使用标识不清、破损和泄露的个人防护用品,保证个人防护的可靠性。

(3) 个人防护装备的净化和消毒

为了防止个人防护装备被污染而携带生物因子, 所有在致病微生物实验室使用过的个人防护装置均应视为已被污染。应进行净化和消毒后再作处理。实验室应制定严格的个人防护装备去污染的标准操作程序并严格执行。同时, 所有个人防护装备不可带离实验室。

(4)个人防护的易操作性和舒适性

个人防护要适宜、科学。在危害评估的基础上,按不同级别的防护要求选择恰当的个人防护装备。在确保个人防护水平高于工作人言免受伤害所需要的最低防护水平的同时,也要避免个人防护过渡,造成操作不便甚至有害健康。

6.3.2 生物实验室个人防护装备

在实验室工作中,个人防护所涉及的防护部位主要包括.眼睛、头面部、躯体、手足、耳(听力)以及呼吸道,人防护装备包括眼睛(安全镜、护目镜)、口罩、面罩、防毒面罩、防护帽、手套、防护服、(实验服、隔离衣、连体衣、围裙)、鞋套以及听力防护器等。表 6-2 汇总了在实验室中使用的一些个人防护装备己所能提供的保护。

表 6-2 个人防护装备

装备	避免的危害	安全性特征
实验服、隔离衣、连体衣	污染衣服	背面开口, 罩在日常服装外
塑料围裙	污染衣服	防水
鞋袜	碰撞和喷溅	不露脚趾
护目镜	碰撞和喷溅	防碰撞镜片(必须有视力矫正或外戴视力矫正眼镜),侧面有护罩
安全眼镜	碰撞	防碰撞镜片(必须有视力矫正),侧面有护罩
面罩	碰撞和喷溅	罩住整个面部,发生意外时易于取下
防毒面具	吸入气凝胶	在设计上包括一次性使用的、整个面部或一半面部空气净化的、整个面部或加罩的动力空气净化呼吸器的以及供气的防毒面具
手套	直接接触微生物	得到微生物学认可的一次性乳胶、乙烯树脂或聚 腈类材料的保护手套

6.4 各级生物安全实验室的个人防护要求

个人防护的内容包括防护用品和防护操作程序。所有实验室人员必须经过个人 防护的必要培训,考核合格获得相应资质,熟悉所从事工作的风险和实验室特殊要 求后方可进入实验室工作。生物实验室应按照实验室等级实施相应的个人防护。不同生物安全等级的实验室人防护要求如下(表 6-3)。

表 6-3 生物安全实验室的防护要求

分级	实验室类型	基本防护
一级	基础实验室 (基础教学、研究)	一般不需要特殊的个体防护装备和隔离设施;穿工作服,必要时戴手套和护目镜
二级	基础实验室 (初级卫生服务诊断、研究)	配备生物安全柜;穿工作服,处理可能致病的感染性材料时必须戴手套,必要时适用面部防护
三级	防护实验室 (专门特殊诊断研究)	具有屏障设施和生物安全柜严格穿戴个人防护装备, 特殊防护服,护目镜,N99 口罩,双层手套,胶鞋
四级	最高防护实验室 (危险病原体研究)	具有屏障设施和生物安全柜; 穿正压防护服

第七章 实验室废弃物处置

实验废弃物是指实验过程中产生的三废(废气、废液、固体废物)物质、实验剧毒物品、麻醉品、化学药品残留物、放射性废弃物、实验动物尸体及器官、病原微生物标本及对环境有污染的废弃物。与工业三废相比,实验室废弃物数量上较少,但其种类多、成分复杂,具有多重危险危害性,如燃、爆、腐蚀、毒害等。由于不便集中处理,实验室废弃物处理成本高、风险大。因此,加强对实验室废弃物的管理,正确处置、处理实验废弃物。

我国颁布了多项法律法规,如中华人民共和国环境保护法、中华人名共和国废弃物污染环境防治法、中华人名共和国水污染防治法、病原微生物实验室生物安全环境管理条例、废弃危险化学品污染环境防治办法、国家环境保护总局令第27号等,从法律、制度上来保证和规范对实验室废弃物的管理。

7.1 实验室废弃物的一般处置原则

7.1.1 处理实验废弃物的一般程序

处理实验室废弃物的一般程序可分为下述四步:

- (1) 鉴别废弃物及危害性;
- (2)系统收集、储存实验废弃物:
- (3) 采用恰当的方法处理废弃物以及减少废弃物的数量:
- (4)正确处置废弃物。

7.1.2 实验废弃物的鉴别

实验废弃物及其危害性的识别对实验室废弃物的收集、存放、处理至关重要。

了解实验室废弃物的组成及危害性为正确处置这些废弃物提供了必要的信息。平时实验过程中应注意熟悉各类物质的危害特性,并且养成做好已知成分废弃物的标记的习惯,不论废弃物的量是多少,在盛放废弃物的容器上表明它的成分及可能具有的危害性及贮存时间,这将为安全处置废弃物提供便利。不同的废弃物其收集、存储、处理的注意事项不同。因此,首先按照下面的方法对实验室废弃物进行鉴别(图7-1)。

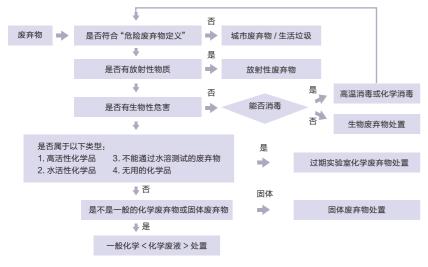


图 7-1 鉴别实验室废弃物流程图

7.1.3 实验废弃物的收集及存储一般原则

在实验废弃物处置过程中,不可避免地涉及收集和储存的问题。在废弃物收集和储存的过程中应注意下面的问题。

- (1)使用专门的储存装置,放置在指定位置;
- (2)相容的废弃物可以收集在一起,不具相容性的实验废弃物应分别贮存。切 勿将不相溶的废弃物放置在一起:

- (3)做好废弃物标签,将标签牢固地贴在容器上。标签的内容应该包括:组分及含量,危害性,开始存储日期及储缓日期、地点、存储人及电话;
- (4)避免废弃物存储时间过长。一般不要超过一年。应及时做无害化处理或送专业部门处理:
- (5) 对感染性废弃物或有毒有害生物性废物, 应根据其特性选择合适的容器和 地点, 专人分类收集进行消毒、烧毁处理, 需日产日清:
- (6) 对无毒无害的生物性废弃物,不得随意丢弃,实验完成后将废弃物装入统一的塑料袋密封后贴上标签,存放在规定的容器和地点,定期集中深埋或焚烧;
- (7) 高危类剧毒品、放射性废物必须按照相关管理要求单独管理储存,单独收集清运:
- (8)回收使用的废弃物容器一定要清洗后再用,废弃不用的容器也要作为废弃物处置。

7.2 化学实验室废弃物的管理与处理

7.2.1 化学废弃物的范畴

表 7-1 化学废弃物范畴表

镍及化合物	非卤代有机溶剂及其化合物	有机铅化合物
有机汞化合物	有机硒化合物	颜料
杀虫剂	制药产品和药品	除磷酸盐外的含磷化合物
硒化合物	银化合物	铊及其化合物
锡化合物	钒化合物	锌化合物
酸、碱金属和腐蚀性化合物	浓度大于 10% 的乙酸	酸或酸性溶液, 酸度相当于浓度在 5% 以上的硝酸的酸溶液

浓度大于 10% 的氨水	碱或碱性溶液, 碱度相当于浓度在 1% 以上的氢氧化纳的碱溶液	浓度大于 1% 的铬酸
浓度大于5%的氟硼酸	浓度大于 10% 的甲酸	浓度大于 5% 的盐酸
浓度大于 0.1% 的氢氟酸	浓度大于8%的硝酸	浓度大于 5 % 高氯酸
浓度大于 5% 的磷酸	浓度大于 1% 的氢氧化钾溶液	含 5% 以上活性氯

7.2.2 化学废弃物的存储

化学废弃物存储的注意事项:选择合适容器和存放地点,存放地点有相应的警示标识(如图 7-2);废弃物容器标签注明:种类、时间;禁止混放,分类收集(如图 7-3),隔离存放,各类化学废弃物具体处置如下:

- (1) 卤代溶剂类废弃物容器: 收集含卤的有机溶剂(如三氯甲烷、四氯乙烯、二氯甲烷等)和其他含卤的有机化合物:
- (2)非卤代溶剂废弃物容器: 收集不含卤的有机溶剂其他化合物,如丙酮、乙烷、石油醚;
- (3) 无机酸放入无机酸类废弃物容器,有机酸放入有机酸类废弃物容器。应远离 1) 活泼金属,如:钠、钾、镁;2) 氧化物及易燃有机物;3) 混合后产生有毒 气体的物质,如氰化物、硫化物、碳化物;
- (4) 碱类废弃物容器: 收集氢氧化钠、氢氧化钾、氨水等, 存储时应远离酸及一些性质活泼的药物;
- (5) 氰化物类废弃物容器: 此容器中的废料务必保持强碱性, 以免有氢氰酸气体逸出:
- (6) 氢氟酸类废弃物容器: 若现场没有此类容器, 且此废料量又少(小于无机酸废料体积的 30%), 可在无机酸废弃物容器中处置;
- (7)含硼和六价铬溶液容器:含硼和六价铬的废液实验室要为它们设计专用的

排放管道;

- (8)凝胶状废弃物容器: 用来盛装凝胶废弃物, 如聚丙烯酰胺或者琼脂糖凝胶;
- (9) 滑剂类废弃物容器: 收集泵油、润滑剂、液态烷烃、矿物盐等;
- (10)有机酸类废弃物容器:用来收集废有机酸。如有计算的量较低(小于4L/月) 允许在非卤溶剂和卤代溶剂废弃物容器中处理。

图 7-2 化学品存储地警示标识

图 7-3 废弃物存储容器

7.2.3 化学废弃物的回收流程

- (1) 所有待回收的废弃化学品,均应妥善保管在实验室内,不可放置在过道、 走廊等公共场所。
- (2)所有待回收处理的化学品均须有标签、瓶盖拧紧且外包装完好,并在外包装上粘贴回收明细。
- (3)回收当日,自行将包装好的废弃化学品搬到指定回收点,有序等待回收,并遵守现场工作人员安排。

 \cdot 91 \cdot

实验室与设备管理处通过招标确定回收公司,并与回收公司签订回收合同,按 广州环保局的要求办理危险废物转移报批手续

回收申请单位统一将"华南理工大学废弃化学品回收申报表"(加盖公章)报 实验室与设备管理处,电子版发至指定邮箱

实验室与设备管理处与回收公司业务员确定回收日期, 并通知相关单位设备员

相关单位做好回收前的准备工作,等待回收

后勤处工作人员、学院设备员对回收现场进行管理,与回收人员公司确定回收 重量,并做记录

后勤处经办人将回收重量记录表经领导签字盖章后报实验室与设备管理处

实验室与设备管理处根据后勤处提供的回收重量与回收公司进行对账业务

回收公司开具发票

实验室与设备管理处根据合同及财务处要求进行报账手续

图 7-4 华南理工大学化学品回收流程

7.3 放射性废弃物的管理与处理

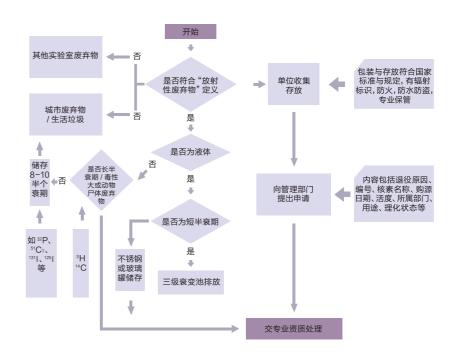


图 7-5 放射性废弃物处置流程图

7.4 生物废弃物的管理与处理

生物废弃物的处理原则:

- (1) 严禁将生物废弃物同生活垃圾混放;
- (2)生物废物需按照规定类收集;
- (3)一般要求日产日清;
- (4) 有感染风险的废物需先进行杀菌消毒处理。

 \cdot 93 \cdot \cdot 94 \cdot

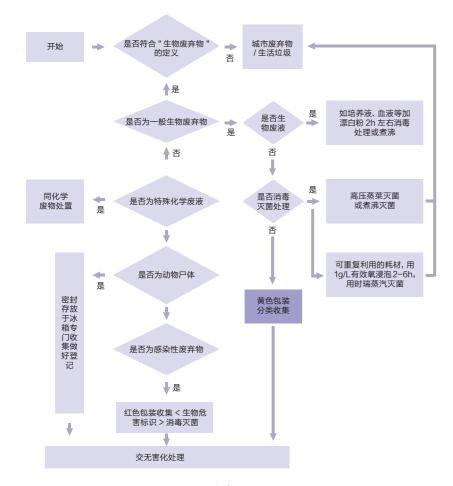


图 7-6 生物废弃物处置流程图

第八章 激光安全

激光/放大光源产生的光线在自然界中原本不存在,高强度光等激发物质被输入激光枪后,形成激光发射或者激光输出。虽然输出的是光,但是激光与太阳光或灯泡放出的光有很大的区别。因此,由于激光的特殊性,通常在使用过程中存在一定的危险性。激光能够产生人眼看的到的单色光,还具有干涉性,即所有光波的相位彼此相同,具有干涉性的光比相同波长和强度的光危险得多。

8.1 激光等级的分类

激光系统根据终端用户在工作中用到的波长和输出功率进行分类,这种分类 也可以看作是激光系统危险程度的分类。分类标准由发射波长、输出功率和波束特 性决定。分类从1级开始,共4类,激光系统的分类等级越高,危险性越大。激光等 级通常用罗马数字标注在激光系统上,产品上一般贴有分类标签,标签中除了有文 字警示外,还包括波长、总输出功率、激光分类等信息。

(一)一级激光

一级激光属于本身安全型激光,该系列激光在正常使用情况下不会对健康带来危害,产品使用了防止工作人员在工作过程中进入激光辐射区域的设计。

(二)二级激光

二级激光指小功率、可见激光。用户凭借对强光眨眼反射可保护自己,但是如果长时间直视会带来危险,二级激光需要张贴警示标识(图8-1)。

图 8-1 激光警示标识

(三)三级激光

三级激光系统也要张贴"警示"标识,有时要张贴"危险"标识。如果只是短时间看到,用户凭借人眼对光的排斥反应会起到保护作用。三级激光系统如果直视或者看到二次光束可能造成伤害。通常该系列经无光表面反射后不会造成伤害。尽管它们对人眼存在伤害,但是引起火灾、烧伤皮肤的危险性较小。建议使用该系列激光时佩戴护眼装置。

(四)四级激光

四级激光对皮肤和眼睛都存在伤害。直接反射、二次反射、漫反射均会造成伤害。所有四级激光系统都带有"危险"标志。四级激光还损坏激光区域内或附近的材料,引燃可燃物质。使用该系列激光需要佩戴护眼装置。

8.2 激光的危害

(一)人眼的危害

通常一提起激光人们,人们最为关心的是眼睛。激光对人眼的伤害取决于激光波长和输出功率的大小。可见光400~700nm)和近红外光(700~1400nm)能够透过瞳孔聚焦于视网膜,从而对视网膜、视神经和眼睛的中心部位造成不可逆的伤害。非近红外波长的不可见光会给眼睛的外部造成损伤,紫外光辐射(180~400nm)会伤害角膜和晶体,中红外辐射(1400~3000nm)可能穿透眼睛表面造成白内障,远红外可能损害眼睛外表面或者角膜。

(二)电气伤害

激光产品采用的电压(包括直流和交流)通常较高,因而对所有电缆和连接处不得产生麻痹思想,应时刻提防电缆、连接器或设备外壳是否存在危险。

(三)其他伤害

- (1) 激光系统可能烧伤皮肤, 烧伤的程度与激光波长和功率有关;
- (2)部分激光的强度足以烧毁衣服、纸张、或者引燃溶剂和其他一些易燃物质, 使用时必须注意:
- (3)高功率的激光器在使用过程中可能存在高温或熔化的金属片,在实际使用过程中要当心高温碎片的产生。

8.3个人防护

(一)安全环境

激光的使用环境决定激光的安全防护措施。激光的防护措施必须适用于三级和四级激光束在室内和室外受控区域使用。例如三级激光的使用者限制在受过培训的专业人员,而且要控制光束,使其不要扩散至危害区域之外;提供适当的维护设备,用光束挡板阻挡有潜在危害的激光束,在光束中或接近光束的位置使用漫反射挡光材料。四级激光的工作场所需要更多的防护措施: 1)有效的硬件设施用于关断激光或者减少激光的辐射量; 2)锁闭过载操作的自锁闭机构; 3)行政条例,要求受过培训的工作人员配备个人防护用品; 4)表示激光正在工作的醒目的图像或者声音标志。

(二)眼部防护

激光对视觉的伤害是激光产品最大的潜在危害。上面提到了不同波长的激光会对眼睛的不同部位造成不同程度的伤害。

防护不同波段的激光有不同的眼镜(各类激光防护眼镜如图 8-2)。所需要的激光波长和适当的光学密度(OD)是选择激光防护眼镜的两个要素。因此,在眼镜上标明光密度和特定的波长信息是十分重要的,这样可以在特定的激光波长和功率水平下选择合适的眼镜。例如,护目镜标签着 OD4@532nm,只可以阻挡绿色激光 532nm,不可以阻挡其他激光波长,如红激光 690nm(如

图 8-3)。对眼睛的安全防护不能仅仅依赖防护镜,即使佩戴了防护镜也不能直接在光路中进行观察。在使用功率非常高的的激光产品时,唯一的选择就是采用工具设备来阻止激光直接照射人体。

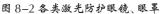


图 8-3 特定的眼镜只能防护特定 激光演示图

(三)保护皮肤

暴露于 250~380nm 波长的激光中皮肤会发生灼伤、皮肤癌、皮肤加速 老化等现象,尤其是 280~315nm 紫外到蓝光波段的激光对皮肤的伤害最严重。 暴露于 280~400nm 波段的激光中的皮肤会加速色素沉积, 310~600nm 波段的激光会使皮肤发生光敏反应, 700~1000 波段的激光会使皮肤灼伤或者角化。

较好的保护皮肤的措施包括穿长袖的由防燃材料制成的工作服,激光受 控区域安装由防燃材料制成,并且表面涂覆黑色或者蓝色硅材料的幕帘和隔光 板以吸收紫外辐射并阻挡红外线。

8.4 激光安全的管理要求

- (1)对功率大的激光器应建立互锁装置等安全设施,并定期安检;
- (2)激光箱及控制台应张贴警示标志,并且能够清楚地看到;
- (3)使用者必须经过相关培训,无关人员禁止入内,严格按照操作程序进行试验,操作期间,必须有人看管;
- (4)必须在光线充足的情况下进行实验,并采取必要的防护措施,切勿直视激光光束或折射光,避免身体直接暴露在激光光束中;
- (5)使用者上岗前,必须接受眼部检查,并定期复查(1次/年);
- (6)注意防止激光对他人的伤害。

 \cdot 99 \cdot \cdot 100 \cdot

第九章 实验室事故应急处置

9.1 实验室应急设施与事故应急预案

9.1.1 实验室应急设施

实验室应急设施包括个人防护器具和安全应急设备。

个人防护器具包括护目镜、口罩、实验服、防护手套等,具体已在第一章"1.6 实验室个体防护"做了详细介绍,实验应急设施包括表 9-1 所列器具和设施。在个人进入实验室工作前,务必检查这些器具和设施是否完备。

表 9-1 实验室安全应急设施

洗眼器	紧急冲淋装置	防护墙或防护掩体
烟雾报警器	灭火沙箱	防火毯
应急灯	警示信号和标示	火灾报警系统
急救药箱	防溢吸收棉	阻燃防爆箱
MSDS 表	通风橱	事故应急预案说明
用于运送化学药品的专用提篮		放碎玻璃或尖锐物的容器

图 9-1 紧急冲淋装置

图 9-2 化学品泄漏应急吸附棉

9.1.2 实验事故应急预案

应急预案又称应急计划,是针对可能的重大事故或灾害,为保证迅速、有序、有效地开展应急与救援行动、降低事故损失而预先制定的有关计划和方案。它是在辨识和评估的重大危险、事故类型、发生的可能性、发生过程、事故后果及影响严重程度的基础上,对应急机构与职责、人员、技术、装备、设施(备)、物资、救援行动及其指挥与协调等方面预先作出的具体安排。它明确了在突发事件发生之前、发生过程中以及刚刚结束之后,谁负责做什么、何时做以及相应的策略和资源准备等。每个实验室中都张贴有事故应急预案,在进入实验室时要首先阅读应急预案,了解事故发生后的应急程序,包括如何报警、控制灾害、疏散、急救等。

9.2 实验室应急准备

9.2.1 为火警准备

- (1) 熟悉实验室周围的安全挑牛诵道:
- (2)了解火警警报及灭火器的位置,确保可以迅速使用学习使用灭火器具;
- (3) 切勿乱动任何火警侦查或者灭火装置;
- (4)保持所有防火门关闭。

9.2.2 为实验室紧急事件准备

- (1)使用化学品前,须详细查阅化学品的安全技术说明书(MSDS);
- (2) 相关安全知识可以登陆实验室与设备管理处实验室安全管理平台学习:
- (3) 熟知实验室内安全设施所在位置:
- (4)准备恰当目充足的急救物资:
- (5)了解所用物品的潜在危险性,严格按照实验室操作规程实验;

 \cdot 101 \cdot \cdot 102 \cdot

- (6) 进入实验室前须接受实验操作培训和实验室安全教育;
- (7) 若对某种做法是否安全有怀疑或保留,最好采取保守做法(响起警报,离开实验室,把处置工作留给专业人员)。

9.2.3 为损伤准备

- (1) 学习简单的急救方法:
- (2) 熟知紧急喷淋和洗眼器位置:
- (3) 确保急救药物器具充足有效, 必要时准备特殊解毒剂;
- (4) 如需要使用氢氟酸或者氰化物等有毒物时, 须先学习如何使用解毒剂。

9.3 实验室事故报告程序

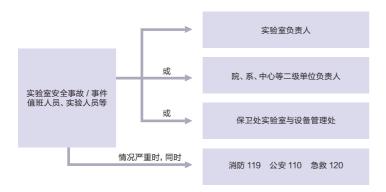


图 9-3 华南理工大学事故报告程序

9.4 实验室常见事故发生原因分析

9.4.1 火灾

火灾性事故的发生具有普遍性,几乎所有的实验室都可能发生,

- (1) 忘记关电源, 致使设备或用电器具通电时间过长, 温度过高, 引起着火;
- (2)操作不慎或使用不当,使火源接触易燃物质,引起着火;
- (3) 供电线路老化、超负荷运行, 导致线路发热, 引起着火;
- (4) 乱扔烟头,接触易燃物质,引起着火。

9.4.2 爆炸

爆炸性事故多发生在具有易燃易爆物品和压力容器的实验室.

- (1)违反操作规程,引燃易燃物品,进而导致爆炸
- (2)设备老化,存在故障或缺陷,造成易燃易爆物品泄漏,遇火花而引起爆炸
- (3)粉尘爆炸、气体爆炸

9.4.3 触电

- (1)违反操作规程,乱拉电线等;
- (2)因设备设施老化而存在故障和缺陷,造成漏电触电;
- (3)漏水、渗水。

9.5 实验室各类事故应急处置

9.5.1 火灾应急处置

(1)发现火情,现场工作人员立即采取措施处理,防止火势蔓延并迅速报告;

- (2)确定火灾发生的位置,判断出火灾发生的原因,如压缩气体、液化气体、易燃液体、易燃物品、自燃物品等:
- (3)明确火灾周围环境,判断出是否有重大危险源分布及是否会带来次生灾难发生:
- (4)明确救灾的基本方法,并采取相应措施,按照应急处置程序采用适当的消防器材进行扑救:
- (5) 依据可能发生的危险化学品事故类别、危害程度级别,划定危险区,对事故现场周边区域进行隔离和疏导;
- (6) 视火情拨打"119"报警求救,并到明显位置引导消防车。

9.5.2 爆炸应急处置

- (1) 实验室爆炸发生时, 实验室负责人或安全员在其认为安全的情况下必需及时切断电源和管道阀门:
- (2)所有人员应听从临时召集人的安排,有组织的通过安全出口或用其他方法迅速撤离爆炸现场:
- (3)应急预案领导小组负责安排抢救工作和人员安置工作。

9.5.3 触电应急处置

触电急救的原则是,在现场采取积极措施保护伤员生命。

- (1)首先要使触电者迅速脱离电源,越快越好,触电者未脱离电源前,救护人员不准用丰直接触及伤员:
- (2) 使伤者脱离电源方法: (1) 切断电源开关; (2) 若电源开关较远, 可用干燥的木棒, 竹竿等挑开触电者身上的电线或带电设备; (3) 可用几层干燥的衣服将手包住, 或者站在干燥的木板上, 拉触电者的衣服, 使其脱离电源;
- (3)触电者脱离电源后, 应视其神志是否清醒, 神志清醒者, 应使其就地躺平,

严密观察,暂时不要站立或走动;如神志不清,应就地仰面躺平,且确保气道通畅,并于 5 秒时间间隔呼叫伤员或轻拍其肩膀,以判定伤员是否意识丧失。禁止摇动伤员头部呼叫伤员(图 9-4);

(4)抢救的伤员应立即就地坚持用人工肺复苏法正确抢救,并设法联系校医务室接替救治。

图 9-4 触电急救示意图

9.5.4 中毒应急处置

实验中若感觉咽喉灼痛、嘴唇脱色或发绀,胃部痉挛或恶心呕吐等症状时,则可能是中毒所致。视中毒原因施以下述急救后,立即送院,不得延误:

- (1)首先将中毒者转移到安全地带,解开领扣,使其呼吸通畅,让中毒者呼吸到 新鲜空气,并尽可能了解导致中毒的物质;
- (2) 误服毒物中毒者, 须立即引吐、洗胃及导泻, 患者清醒而又合作, 宜饮大量清水引吐, 亦可用药物引吐。对引吐效果不好或昏迷者, 应立即送医院用胃管洗胃。孕妇应慎用催吐救援:
- (3) 重金属盐中毒者,喝一杯含有几克 MgSO4 的水溶液,立即就医。不要服催吐药,以免引起危险或使病情复杂化。砷和汞化物中毒者,必须紧急就医;
- (4) 吸入刺激性气体中毒者, 应立即将患者转移离开中毒现场, 给予 2%~5%

· 105 ·

碳酸氢钠溶液雾化吸入、吸氧。气管痉挛者应酌情给解痉挛药物雾化吸入。 应急人员一般应配置过滤式防毒面罩、防毒服装、防毒手套、防毒靴等。

9.5.5 机械性损伤事故应急处置

实验室常发生的机械性损伤包括割伤、刺伤、挫伤、撕裂伤、撞伤、砸伤、扭伤等。对于轻伤,处理的关键是清创、止血、防感染。当伤势较重,出现呼吸骤停、窒息、大出血、开放性或张力性气胸、休克等危及生命的紧急情况时,应临时施心肺复苏、控制出血、包扎伤口、骨折固定等。

(一) 轻伤外置

- (1) 立即关闭运转机械, 保护现场, 向应急小组汇报;
- (2)对伤者同时消毒、止血、包扎、止痛等临时措施:
- (3)尽快将伤者送医院进行防感染和防破伤风处理,或根据医嘱作进一步检查。

(二)重伤外置

- (1)立即关闭运转机械,保护现场,及时向现场应急指挥小组及有关部门汇报,应急指挥部门接到事故报告后,迅速赶赴事故现场,组织事故抢救;
- (2) 立即对伤者进行包扎、止血、止痛、消毒、固定等临时措施,防止伤情恶化。 如有断肢等情况,及时用干净毛巾、手绢、布片包好,放在无裂纹的塑料袋 或胶皮袋内,袋口扎紧,在口袋周围放置冰块、雪糕等降温物品,不得在断 肢处涂酒精、碘酒及其他消毒液;
- (3) 迅速拨打 120 求救或送附近医院急救, 断肢随伤员一起运送。

9.5.6 化学灼伤应急处置

化学灼伤常有强酸、强碱、黄磷、液溴、酚类等腐蚀性物质引起。伤处剧烈灼痛, 轻者发红或起疱,重者溃烂。创面不易愈合,某些化学品可被皮肤、粘膜吸收,出现 合并中毒现象。紧急处置办法为:

- (1) 迅速移离现场, 脱去受污染的衣物, 立即用大量流动清水冲洗 20~30 min。碱性物质污染后冲洗时间应该延长, 特别要注意眼睛及其他特殊部位如头、面、手的冲洗;
- (2)对有些化学物灼伤,如氰化物、酚类、氯化钡、氢氟酸等在冲洗时应进行适当解毒救急处理;
- (3) 化学灼伤创面应彻底清创、减去水疱、清除坏死组织。深度创面应立即或早期进行削(切) 痂植皮及延迟植皮。
- (4) 灼伤创面经水冲洗后,必要时进行合理的中和治疗,例如氢氟酸灼伤,经水冲洗后需及时用钙、镁试剂局部中和治疗,必要时用葡萄酸钙动、静脉注射;
- (5) 烧伤面积较大, 应令伤员躺下, 等待医生到来。头、胸应略低于身体其他部位, 腿部若无骨折, 应将其抬起;
- (6) 化学灼伤并休克时, 冲洗从速从简, 积极进行抗休克治疗;
- (7) 如患者神志清醒, 并能饮食, 给以大量饮料;
- (8)及时就医,解毒、抗感染,进行进一步治疗。

表 9-2 为常见化学灼伤、创伤的处置措施举例,如在实验过程中遇到这类事件可以参照表格所列出的方法讲行初步处理。

表 9-2 化学灼伤、创伤急救措施举例

种类	急救措施
一、灼伤	一般用大量自来水冲洗,再用高锰酸钾润伤处;;或用苏打水洗,再擦烫伤膏或凡士林。
酸灼伤	先用大量水冲洗然后用5%的磷酸氢纳或10%的氨水清洗伤口;若溅入眼睛内,应先用清水冲洗,然后用3%的碳酸氢钠冲洗,随即去医院治疗。氢氟酸灼伤立即用水冲洗伤口至苍白色并涂以甘油与氧化镁(2:1)或用冷的饱和碳酸镁溶液清洗伤口后包扎好,要严防氢氟酸进入皮下和骨骼中。
碱灼伤	用大量水冲洗, 然后用 2% 的硼酸或 2% 的醋酸冲洗, 严重者去医院治疗。

种类	急救措施
氰化物灼伤	
钠灼伤	可见的金属钠小块用银子移去, 其余与碱灼伤处理相同。
溴灼伤	立即用大量水冲洗,再用乙醇擦至无溴液存在为止,然后涂上甘油或烫伤油膏,用3%硫酸铜的酒精溶液润湿纱布包扎。
黄磷灼	立即用 1% 流酸铜溶液洗净残余的磷,或用镊子除去麟屑,或用湿棉花擦去,再用 0.01% 高锰酸钾溶液湿敷,外涂保护剂,用绷带包扎。眼粘膜损害时,用 2%小苏打水冲洗多次。
铬酸灼	先用大量流动清水冲洗,再用氯化铵稀溶液漂洗。 创面治疗: 1)5% 硫代硫酸钠溶液湿敷;; 2)涂以5% 硫代硫酸钠软膏;; 3)CaNa2-EDTA 软膏或溶液湿敷;; 4)10% 维生素 C 溶液湿敷,使 Cr^{6+} 还原成 Cr^{3+} ,并与其结合,使其失去活性;; 5)深度创面以早期切痂植皮。
酚灼	先用大量水冲洗,然后用 (4+1)70% 乙醇 - 氧化铁 (1mol/L) 混合溶液冲洗。
氧化锌灼伤	若只是浅表受伤,用生理盐水清洗创面,周围用 75% 的酒精清洗,然后包扎。 若伤口较深或有异物,应立即到医院去清创缝合处理。
硝化银灼伤	先用水冲洗,再用5%碳酸氢钠溶液漂洗,涂油膏及磺胺粉
二、创伤	若受伤重,大量出血,应先让伤者躺下,抬高受伤部位,让伤者保暖用垫子稍用力压住伤口,用止血带来止血,同时拔打急救电话。
三、烧伤	轻度烧伤可用冷水冲洗 15-30min, 再以生理盐水擦拭, 勿用药膏、牙膏涂抹, 切勿刺破水泡。重度烧伤为应送医院。
四、烫伤	勿用水冲洗,若皮肤未破,可用碳酸氢钠粉调成浆状敷于伤处,或伤处抹些黄色苦味酸溶液、烫伤药膏、万花油等。若伤处已破,可涂些紫药水或 0.1% 高锰酸钾溶液。
五、冻伤	应迅速脱离低温环境和冰冻物体,用 40℃左右温水将冰冻融化后将衣物脱下或剪开,然后在对冻伤部位进行复温的同时,尽快就医,对于心跳呼吸骤停者要施行心脏按压和人工呼吸。严禁用火烤、雪搓、冷水浸泡或猛力捶打等方式作用冻伤部位。
六、吸入性化	采取果断措施切断毒源(如关闭管道阀门、堵塞泄漏的设备等);;并通过开启门、窗等措施降低毒物浓度,救护者在进入毒区抢救之前,应佩戴好防护面具和防

学中毒 护服。尽快转移病人阻止毒物继续侵入人体采取相应的措施进行现场应急救援,

同时拔打 120 求救。

9.5.7 化学品泄漏沾染皮肤应急处置

- (1) 立刻用水冲洗至少 15 分钟(浓硫酸也要冲);
- (2)如果没有明显的灼伤,可以用温水和肥皂水清洗,也可以用"中和剂"(弱酸、弱碱溶液)清洗。当灼伤面积较大时,可用冷水浸湿的干净的衣物敷在创面上(图 9-5),然后就医;
- (3)检查实验记录,看是否还有潜在的危害继续;
- (4)对于黏在衣服上的泄露物,不要试图去擦,应迅速脱去污染的衣服、鞋子和饰物:
- (5) 时间紧迫时, 迅速除去或剪开衣服, 不要犹豫;
- (6) 迅速送医院, 拨打 120, 说清楚引起伤害的化学品名称, 受伤过程及受伤程度。自己送医院也是可以的。

 \cdot 109 \cdot \cdot 110 \cdot

图 9-5 化学品沾染皮肤处置办法

9.5.8 常见试剂泄溢应急处置

- (1) 氯化钠、氢化钾的污染:将硫代硫酸钠(高锰酸钾、次氯酸钠、硫酸亚铁)溶液浇在污染处后碱液透湿污染处,然后用热水及冷水冲洗干净。
- (2) 硫酸二甲酯撒漏后, 先用氨水洒在污染处, 使其起中和作用; 也可用漂白粉加五倍水后浸湿污染处, 用热水冲, 再用冷水冲。
- (3)对硫磷及其他有机磷剧毒农药,如苯硫磷、敌死通污染,可先用石灰将撒泼的药液吸去,继而用,再用碱水浸湿,最后用热水和冷水各冲一遍。
- (4)甲醛撒漏后,可用漂白粉加五倍水后浸湿污染处,使甲醛与漂白粉氧化成甲酸,再用水冲洗干净。
- (5) 汞撒漏后, 可先行收集, 尽可能不使其泄入地下缝隙, 并用硫磺粉盖在 洒落的地方, 并碾磨使硫磺粉与汞充分混合, 使汞转变成不挥发的硫化 汞。
- (6)苯胺撒漏后,可用稀盐酸溶液浸湿污染处,再用水冲洗。因为苯胺呈碱性, 能与盐酸反应生成盐酸盐,如用硫酸溶液,可生成硫酸盐。
- (7) 盛磷容器破裂,一旦脱水将产生自燃,故切勿直接接触,应用工具将磷迅速移入盛水容器中。污染处先用石灰乳浸湿,再用水冲。被黄磷污染过的工具可用 5% 硫酸铜溶液冲洗。

- (8) 砷撒漏, 可用碱水和氢氧化铁解毒, 再用水冲洗。
- (9) 溴撒漏, 可用氨水使之生成按盐, 再用水冲洗干净。

9.5.9 中毒应急处置

各类中毒事件的处理办法见表 9-3, 气体中毒注意事项:

(1) 迅速将伤员救离现场, 移至空气流通、新鲜的地方;

- (2)松开衣领、紧身衣物和腰带;
- (3)有条件可以接氧气(流速不要太大);
- (4)要保暖,静卧,并观察伤者病情变化;
- (5) 搞清楚什么气体中毒, 以便对症下药;
- (6) 经紧急处理后, 立即送院治疗;
- 图 9-6 当心有毒气体

(7) 存放有毒气体的实验室应标有警示标志(图 9-6)。

